Computational screening of metal-organic frameworks with open copper sites for hydrogen purification

2020 ◽  
Vol 45 (51) ◽  
pp. 27320-27330 ◽  
Author(s):  
Manuel J. Chiau Junior ◽  
Yuguo Wang ◽  
Xuanjun Wu ◽  
Weiquan Cai
2019 ◽  
Author(s):  
Andrew Rosen ◽  
M. Rasel Mian ◽  
Timur Islamoglu ◽  
Haoyuan Chen ◽  
Omar Farha ◽  
...  

<p>Metal−organic frameworks (MOFs) with coordinatively unsaturated metal sites are appealing as adsorbent materials due to their tunable functionality and ability to selectively bind small molecules. Through the use of computational screening methods based on periodic density functional theory, we investigate O<sub>2</sub> and N<sub>2</sub> adsorption at the coordinatively unsaturated metal sites of several MOF families. A variety of design handles are identified that can be used to modify the redox activity of the metal centers, including changing the functionalization of the linkers (replacing oxido donors with sulfido donors), anion exchange of bridging ligands (considering μ-Br<sup>-</sup>, μ-Cl<sup>-</sup>, μ-F<sup>-</sup>, μ-SH<sup>-</sup>, or μ-OH<sup>-</sup> groups), and altering the formal oxidation state of the metal. As a result, we show that it is possible to tune the O<sub>2</sub> affinity at the open metal sites of MOFs for applications involving the strong and/or selective binding of O<sub>2</sub>. In contrast with O<sub>2</sub> adsorption, N<sub>2</sub> adsorption at open metal sites is predicted to be relatively weak across the MOF dataset, with the exception of MOFs containing synthetically elusive V<sup>2+</sup> open metal sites. As one example from the screening study, we predict that exchanging the μ-Cl<sup>-</sup> ligands of M<sub>2</sub>Cl<sub>2</sub>(BBTA) (H<sub>2</sub>BBTA = 1<i>H</i>,5<i>H</i>-benzo(1,2-d:4,5-d′)bistriazole) with μ-OH<sup>-</sup> groups would significantly enhance the strength of O<sub>2</sub> adsorption at the open metal sites without a corresponding increase in the N<sub>2</sub> affinity. Experimental investigation of Co<sub>2</sub>Cl<sub>2</sub>(BBTA) and Co<sub>2</sub>(OH)<sub>2</sub>(BBTA) confirms that the former exhibits only weak physisorption, whereas the latter is capable of chemisorbing O<sub>2</sub> at room temperature. The chemisorption behavior is attributed to the greater electron-donating character of the μ-OH<sup>-</sup><sub> </sub>ligands and the presence of H-bonding interactions between the μ-OH<sup>-</sup> bridging ligands and the O<sub>2</sub> adsorbate.</p>


Author(s):  
Donglai Mao ◽  
John M. Griffin ◽  
Richard Dawson ◽  
Alasdair Fairhurst ◽  
Nuno Bimbo

AIChE Journal ◽  
2011 ◽  
Vol 58 (7) ◽  
pp. 2078-2084 ◽  
Author(s):  
Dong Wu ◽  
Cuicui Wang ◽  
Bei Liu ◽  
Dahuan Liu ◽  
Qingyuan Yang ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 6188-6194 ◽  
Author(s):  
Xin Mao ◽  
Cheng Tang ◽  
Tianwei He ◽  
Dimuthu Wijethunge ◽  
Cheng Yan ◽  
...  

Designing a new synthesized MOF for CO2 reduction based on d band center.


2010 ◽  
Vol 12 (39) ◽  
pp. 12621 ◽  
Author(s):  
Jeffery A. Greathouse ◽  
Nathan W. Ockwig ◽  
Louise J. Criscenti ◽  
T. R. Guilinger ◽  
Phil Pohl ◽  
...  

2018 ◽  
Author(s):  
Andrew Tarzia ◽  
Masahide Takahashi ◽  
Paolo Falcaro ◽  
Aaron Thornton ◽  
Christian Doonan ◽  
...  

The ability to align porous metal–organic frameworks (MOFs) on substrate surfaces on a macroscopic scale is a vital step towards integrating MOFs into functional devices. But macroscale surface alignment of MOF crystals has only been demonstrated in a few cases. To accelerate the materials discovery process, we have developed a high-throughput computational screening algorithm to identify MOFs that are likely to undergo macroscale aligned heterepitaxial growth on a substrate. Screening of thousands of MOF structures by this process can be achieved in a few days on a desktop workstation. The algorithm filters MOFs based on surface chemical compatibility, lattice matching with the substrate, and interfacial bonding. Our method uses a simple new computationally efficient measure of the interfacial energy that considers both bond and defect formation at the interface. Furthermore, we show that this novel descriptor is a better predictor of aligned heteroepitaxial growth than other established interface descriptors, by testing our screening algorithm on a sample set of copper MOFs that have been grown heteroepitaxially on a copper hydroxide surface. Application of the screening process to several MOF databases reveals that the top candidates for aligned growth on copper hydroxide comprise mostly MOFs with rectangular lattice symmetry in the plane of the substrate. This result indicates a substrate-directing effect that could be exploited in targeted synthetic strategies. We also identify that MOFs likely to form aligned heterostructures have broad distributions of in-plane pore sizes and anisotropies. Accordingly, this suggests that aligned MOF thin films with a wide range of properties may be experimentally accessible.


Sign in / Sign up

Export Citation Format

Share Document