Assessing the cyclic-variability of spark-ignition engine running on methane-hydrogen blends with high hydrogen contents of up to 50%

Author(s):  
G.M. Kosmadakis ◽  
D.C. Rakopoulos ◽  
C.D. Rakopoulos
Author(s):  
Fazal Um Min Allah ◽  
Caio Henrique Rufino ◽  
Waldyr Luiz Ribeiro Gallo ◽  
Clayton Barcelos Zabeu

Abstract The flex-fuel engines are quite capable of running on gasohol and hydrous ethanol. However, the in-cylinder cyclic variations, which are inherently present in spark-ignition (SI) engines, affect the performance of these engines. Therefore, a comprehensive analysis is required to evaluate the effects of in-cylinder cyclic variations of a flex-fuel engine. The experiments were carried out by using Brazilian commercial Gasohol E27 (mixture of 27% anhydrous ethanol in gasoline) and hydrous ethanol E95h (5% water by volume in ethanol) as fuels for a commercial flex-fuel spark ignition engine. A comparison between the cyclic variations of gasohol and hydrous ethanol is presented in this paper. Moreover, the effects of engine operating parameters (i.e., engine speed, engine load and relative air fuel ratio) on cyclic variations are also investigated. The acquired data of in-cylinder pressure and combustion durations are evaluated by carrying out a statistical analysis. The coefficient of variation for indicated mean effective pressure (IMEP) did not exceed the limit of 5% for all tested conditions. Higher cyclic variability of maximum in-cylinder pressure is observed for gasohol fuel and higher engine speeds. The variability of in-cylinder combustion is also evaluated with the help of different combustion stages, which are characterized by corresponding crank positions of 10%, 50% and 90% mass fractions burned.


2018 ◽  
Vol 174 ◽  
pp. 769-778 ◽  
Author(s):  
G.M. Kosmadakis ◽  
D.C. Rakopoulos ◽  
J. Arroyo ◽  
F. Moreno ◽  
M. Muñoz ◽  
...  

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Muhsin M. Ameen ◽  
Mohsen Mirzaeian ◽  
Federico Millo ◽  
Sibendu Som

Cycle-to-cycle variability (CCV) is detrimental to IC engine operation and can lead to partial burn, misfire, and knock. Predicting CCV numerically is extremely challenging due to two key reasons. First, high-fidelity methods such as large eddy simulation (LES) are required to accurately resolve the in-cylinder turbulent flow field both spatially and temporally. Second, CCV is experienced over long timescales and hence the simulations need to be performed for hundreds of consecutive cycles. Ameen et al. (2017, “Parallel Methodology to Capture Cyclic Variability in Motored Engines,” Int. J. Engine Res., 18(4), pp. 366–377.) developed a parallel perturbation model (PPM) approach to dissociate this long time-scale problem into several shorter time-scale problems. This strategy was demonstrated for motored engine and it was shown that the mean and variance of the in-cylinder flow field was captured reasonably well by this approach. In the present study, this PPM approach is extended to simulate the CCV in a fired port-fuel injected (PFI) spark ignition (SI) engine. The predictions from this approach are also shown to be similar to the consecutive LES cycles. It is shown that the parallel approach is able to predict the coefficient of variation (COV) of the in-cylinder pressure and burn rate-related parameters with sufficient accuracy, and is also able to predict the qualitative trends in CCV with changing operating conditions. It is shown that this new approach is able to give accurate predictions of the CCV in fired engines in less than one-tenth of the time required for the conventional approach of simulating consecutive engine cycles.


Sign in / Sign up

Export Citation Format

Share Document