ASME 2019 Internal Combustion Engine Division Fall Technical Conference
Latest Publications


TOTAL DOCUMENTS

76
(FIVE YEARS 76)

H-INDEX

2
(FIVE YEARS 2)

Published By American Society Of Mechanical Engineers

9780791859346

Author(s):  
Paul Ragaller ◽  
Josh Mandelbaum ◽  
Luc Lapenta ◽  
Alexander Sappok ◽  
Josh Pihl ◽  
...  

Abstract Lean gasoline engine operation provides clear efficiency benefits relative to conventional stoichiometric combustion approaches. One of the key hurdles to the widespread, practical implementation of lean gasoline combustion remains the challenge of lean NOx control. One of the potential approaches for controlling NOx emission from lean gasoline engines is the so-called passive selective catalytic reduction (SCR) system. In such systems, periods of rich operation generate ammonia over a three-way catalyst (TWC), which is then adsorbed on the downstream SCR and consumed during lean operation. Brief periods of rich operation must occur in response to the depletion of stored ammonia on the SCR, which requires reliable measurements of the SCR ammonia inventory. Presently, lean exhaust system controls rely on a variety of gas sensors mounted up- and downstream of the catalysts, and which only provide an indirect inference of the operation state. In this study, a radio frequency (RF) sensor was used to provide a direction measurement of the amount of ammonia adsorbed on the SCR in real-time. The RF sensor was calibrated and deployed on a BMW N43B20 4-cylinder lean gasoline engine equipped with a passive SCR system. Brief periods of rich operation performed at lambda values between 0.98 and 0.99 generated the ammonia, subsequently stored on the SCR for consumption during periods of lean operation. The experiments compared real-time measurements of SCR ammonia inventory from the RF sensor with estimates of ammonia coverage derived from exhaust gas composition measurements upstream and downstream of the catalyst. The results showed a high degree of correlation between the RF measurements and SCR ammonia storage inventory, and demonstrated NOx conversion efficiencies above 98%, confirming the feasibility of the concept. Relative to stoichiometric operation, lean-gasoline operation resulted in fuel efficiency gains of up to 10%, which may be further improved through direct feedback control from the RF sensor to optimize lean–rich cycling based on actual, measured SCR ammonia levels.


Author(s):  
Joohan Kim ◽  
Riccardo Scarcelli ◽  
Sibendu Som ◽  
Ashish Shah ◽  
Munidhar S. Biruduganti ◽  
...  

Abstract Lean combustion in an internal combustion engine is a promising strategy to increase thermal efficiency by leveraging a more favorable specific heat ratio of the fresh mixture and simultaneously suppressing the heat losses to the cylinder wall. However, unstable ignition events and slow flame propagation at fuel-lean condition lead to high cycle-to-cycle variability and hence limit the high-efficiency engine operating range. Pre-chamber ignition is considered an effective concept to extend the lean operating limit, by providing spatially distributed ignition with multiple turbulent flame-jets and enabling faster combustion rate compared to the conventional spark ignition approach. From a numerical modeling perspective, to date, still the science base and available simulation tools are inadequate for understanding and predicting the combustion processes in pre-chamber ignited engines. In this paper, conceptually different RANS combustion models widely adopted in the engine modeling community were used to simulate the ignition and combustion processes in a medium-duty natural gas engine with a pre-chamber spark-ignition system. A flamelet-based turbulent combustion model, i.e., G-equation, and a multi-zone well-stirred reactor model were employed for the multi-dimensional study. Simulation results were compared with experimental data in terms of in-cylinder pressure and heat release rate. Finally, the analysis of the performance of the two models is carried out to highlight the strengths and limitations of the two formulations respectively.


Author(s):  
Greg Beshouri ◽  
Gerry Fischer

Abstract In the late 1980’s Enterprise Engine Company performed a single cylinder test of micro-pilot high pressure direct injection as a retrofit technology for conventional dual fuel engines. While that testing demonstrated a number of benefits for this technology, non-technical considerations led to the use of low pressure Pre-Combustion Chamber (PCC) micro-pilot technology as the retrofit technology instead. Thirty years later, when the automotive components of the PCC micro-pilot system were no longer available, the opportunity again arose to test the capabilities of an off the shelf high pressure direct injection micro-pilot system as a retrofit technology for a conventional dual fuel engine. Single cylinder and full engine testing of the high pressure direct injection micro-pilot injection confirmed the results of the 1980’s testing. The test results also corroborated modern analytical and experimental testing of high pressure pilot technology. In particular, the interaction between the diesel pilot and primary fuel gas charge is very complex and sometimes counterintuitive. Likewise performance optimization requires careful balance of injection timing, injection quantity and fuel gas air/fuel ratio. Even then, exhaust gas methane emissions remain counterintuitive. This paper reviews modern single cylinder and full engine test results focusing on optimization parameters for high pressure direct injection micro-pilot for retrofit and new engine applications.


Author(s):  
Gina M. Magnotti ◽  
Sibendu Som

Abstract To advance compression ignition combustion strategies, researchers have evaluated fuel property effects and their impact on achieving higher efficiencies and lower emissions levels relative to current capabilities. Within the Department of Energy’s Co-Optima initiative, there has been a recent focus on understanding the influence of fuel properties on fuel injection performance. To help identify candidate fuels that can meet desired injector performance metrics, a computational fuel screening tool is under development that can link fuel properties with the tendency of a given fuel to cavitate and lead to cavitation-induced erosion. In the initial development of this tool, five liquid fuel properties were selected to represent candidate fuels, namely density, viscosity, vapor pressure, surface tension, and heat of vaporization. A design of experiments methodology was employed to generate a set of pseudo-fuel cases, which can represent the main effects and interactions among the fuel properties and be related to cavitation erosion predictions. Large eddy simulations were performed using a mixture modeling approach to predict the cavitation and erosion propensity of these pseudo-fuels in terms of the mean fuel vapor mole fraction and stored impact energy from repeated cloud collapse events. The low order regression models generated from this study revealed the importance of liquid fuel density on cavitation formation, whereas liquid viscosity was found to have a strong negative correlation with erosion severity. The surrogate models were then used in the fuel screening tool to rank the cavitation and erosion tendency of four candidate single-component fuels: methyl decanoate, iso-octane, ethanol and n-dodecane. While the fuel screening tool was not able to quantitatively predict the cavitation and erosion response metrics, the tool was able to accurately rank the relative cavitation and erosion propensity of the four fuels. Overall, ethanol and iso-octane were observed to produce the highest levels of cavitation and erosion, respectively.


Author(s):  
Chao Xu ◽  
Pinaki Pal ◽  
Xiao Ren ◽  
Sibendu Som ◽  
Magnus Sjöberg ◽  
...  

Abstract In the present study, mixed-mode combustion of an E30 fuel in a direct-injection spark-ignition engine is numerically investigated at a fuel-lean operating condition using multidimensional computational fluid dynamics (CFD). A fuel surrogate matching Research Octane Number (RON) and Motor Octane Number (MON) of E30 is first developed using neural network based non-linear regression model. To enable efficient 3D engine simulations, a 164-species skeletal reaction mechanism incorporating NOx chemistry is reduced from a detailed chemical kinetic model. A hybrid approach that incorporates the G-equation model for tracking turbulent flame front, and the multi-zone well-stirred reactor model for predicting auto-ignition in the end gas, is employed to account for turbulent combustion interactions in the engine cylinder. Predicted in-cylinder pressure and heat release rate traces agree well with experimental measurements. The proposed modelling approach also captures moderated cyclic variability. Two different types of combustion cycles, corresponding to purely deflagrative and mixed-mode combustion, are observed. In contrast to the purely deflagrative cycles, mixed-mode combustion cycles feature early flame propagation followed by end-gas auto-ignition, leading to two distinctive peaks in heat release rate traces. The positive correlation between mixed-mode combustion cycles and early flame propagation is well captured by simulations. With the validated numerical setup, effects of NOx chemistry on mixed-mode combustion predictions are investigated. NOx chemistry is found to promote auto-ignition through residual gas recirculation, while the deflagrative flame propagation phase remains largely unaffected. Local sensitivity analysis is then performed to understand effects of physical and chemical properties of the fuel, i.e., heat of evaporation (HoV) and laminar flame speed (SL). An increased HoV tends to suppress end-gas auto-ignition due to increased vaporization cooling, while the impact of HoV on flame propagation is insignificant. In contrast, an increased SL is found to significantly promote both flame propagation and auto-ignition. The promoting effect of SL on auto-ignition is not a direct chemical effect; it is rather caused by an advancement of the combustion phasing, which increases compression heating of the end gas.


Author(s):  
Vyaas Gururajan ◽  
Riccardo Scarcelli ◽  
Anand Karpatne ◽  
Douglas Breden ◽  
Laxminarayan Raja ◽  
...  

Abstract Nanosecond pulsed discharges have attracted the attention of engine manufacturers due to the possibility of attaining distributed ignition sites that accelerate burn rates while resulting in very little electrode erosion. Multidimensional modeling tools currently capture the electrical structure of such discharges accurately, but resolving the chemical structure remains a challenging problem owing to the disparity of time-scales in streamer propagation (nanoseconds) and ignition phenomena (microseconds). The purpose of this study is to extend multidimensional results towards resolving the chemical structure in the wake of streamers (or the afterglow) by using a batch reactor model. This can afford the use of very detailed chemical kinetic information. The full non-equilibrium nature of the electrons is taken into account, along with fast gas heating, shock wave propagation, and thermal diffusion. The results shed light on ignition phenomena brought about by such discharges.


Author(s):  
Bryan Maldonado ◽  
Anna Stefanopoulou ◽  
Riccardo Scarcelli ◽  
Sibendu Som

Abstract Diluted combustion with exhaust gas recirculation (EGR) has been widely employed to improve the fuel economy of spark ignition engines. The combustion kinetics, however, are affected and the flame propagation speed is decreased. In order to compensate for this adverse effect, the spark timing needs to be recalibrated to achieve maximum brake torque (MBT). At high levels of EGR dilution, the spark timing is constrained by two ignition limits: 1) the partial-burn limit where the spark timing is retarded from MBT and 2) the misfire limit where the spark timing is too advanced. This work uses a probabilistic framework to capture the differences between both ignition limits. In particular, it introduces the concept of a nominal indicated mean effective pressure (IMEP) distribution based on the stochastic properties of the cycle-to-cycle variability (CCV) at nominal stable conditions. By defining a nominal band where fully burned cycles occur with high probability, we introduce a cycle classification method that can be used to 1) determine the level of randomness of misfire and partial-burn events, and 2) measure CCV. The new CCV metric based on the density of the nominal band is compared with the traditional coefficient of variation of IMEP (CoVIMEP). It is shown that the nominal band concept, together with the CoVIMEP, can help to discern between partial-burn limited and misfire limited conditions. Furthermore, the Kullback-Leibler divergence is used to demonstrate that the IMEP distribution is significantly different between nominal and partial-burn/misfire limited conditions. Experiments are carried at various EGR levels and spark timings while recoding in-cylinder pressure at steady state. Although the emphasis of this work is to characterize the differences of both ignition limits from a probabilistic point of view, similarities between partial-burn cycles at either limiting conditions are also discussed.


Author(s):  
Intarat Naruemon ◽  
Long Liu ◽  
Dai Liu ◽  
Xiuzhen Ma

Abstract Multiple-injection is an effective injection strategy in order to control the advanced combustion processes in diesel engines. However, because of the multiple-injection application, cause the duration of each injection is shortened, such as the pilot injection and post-injection. The short injection duration results in a very short quasi-steady injection process so that the ramping-up and ramping-down injection processes occupied a much larger scale during the injection. As a result, this circumstance of the spray evolution not been fully understood. To investigate the diesel spray propagation with varying injection rate, visual experiments and numerical simulation analyses on diesel spray were performed. The penetrations of diesel sprays with short injection duration were obtained by reflected shadowgraphy in a combustion chamber’s constant-volume with the multi-hole injector. The diesel spray with varying injection rates was modeled by using CONVERGE CFD software and the model was calibrated and validated by the experimental data. Then diagnosed the spray characteristics including spray penetration, Sauter means diameter, as well as fuel concentration distribution, were analyzed with different injection quantities and injection rate shapes. The spray mixing analysis included that after the end-of-injection in order to consider the low-temperature combustion phenomenon. The shape of the improved injection rate in the fuel mixture considered in the case of injection ending before or after the ignition time was summarized for different conditions.


Author(s):  
Kuo Yang ◽  
Pingen Chen

Abstract Engine efficiency improvement is very critical for medium to heavy-duty vehicles to reduce Diesel fuel consumption and enhance U.S. energy security. The tradeoff between engine efficiency and NOx emissions is an intrinsic property that prevents modern Diesel engines, which are generally equipped with exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT), from achieving the optimal engine efficiency while meeting the stringent NOx emission standards. The addition of urea-based selective catalytic reduction (SCR) systems to modern Diesel engine aftertreatment systems alleviate the burden of NOx emission control on Diesel engines, which in return creates extra freedom for optimizing Diesel engine efficiency. This paper proposes two model-based approaches to locate the optimal operating point of EGR and VGT in the air-path loop to maximize the indicated efficiency of turbocharged diesel engine. Simulation results demonstrated that the engine brake specific fuel consumption (BSFC) can be reduced by up to 1.6% through optimization of EGR and VGT, compared to a baseline EGR-VGT control which considers both NOx emissions and engine efficiency on engine side. The overall equivalent BSFCs are 1.8% higher with optimized EGR and VGT control than with the baseline control. In addition, the influence of reducing EGR valve opening on the non-minimum phase behavior of the air path loop is also analyzed. Simulation results showed slightly stronger non-minimum phase behaviors when EGR is fully closed.


Author(s):  
Harsh D. Sapra ◽  
Jaswinder Singh ◽  
Chris Dijkstra ◽  
Peter De Vos ◽  
Klaas Visser

Abstract Underwater exhaust systems are employed on board ships to allow zero direct emissions to the atmosphere with the possibility of drag reduction via exhaust gas lubrication. However, underwater expulsion of exhaust gases imparts high and dynamic back pressure, which can fluctuate in amplitude and time period as a ship operates in varying sea-states depending on its geographical location and weather conditions. Therefore, this research aims to experimentally investigate the performance of a marine diesel engine against varying amplitudes and time periods of dynamic back pressure at different sea-states due to underwater exhaust systems. In this study, a turbocharged, marine diesel engine was tested at different loads along the propeller curve against dynamic back pressure waves produced by controlling an electronic butterfly valve placed in the exhaust line after the turbine outlet. Engine performance was investigated against single and multiple back pressure waves of varying amplitudes and wave periods based on real sea-state conditions and wave data. We found that the adverse effects of dynamic back pressure on engine performance were less severe than those found against static back pressure. Governor control and turbocharger dynamics play an important role in keeping the fuel penalty and thermal loading low against dynamic back pressure. Therefore, a marine engine may be able to handle much higher levels of dynamic back pressures when operating with underwater exhaust systems in higher sea-states.


Sign in / Sign up

Export Citation Format

Share Document