scholarly journals Constrained extended Kalman filter design and application for on-line state estimation of high-order polymer electrolyte membrane fuel cell systems

Author(s):  
Lukas Böhler ◽  
Daniel Ritzberger ◽  
Christoph Hametner ◽  
Stefan Jakubek
2020 ◽  
Author(s):  
Daniel John Seale Sandbeck ◽  
Niklas Mørch Secher ◽  
Masanori Inaba ◽  
Jonathan Quinson ◽  
Jakob Ejler Sørensen ◽  
...  

Cost and lifetime currently hinder widespread commercialization of polymer electrolyte<br>membrane fuel cells (PEMFCs). Reduced electrode Pt loadings lower costs; however, the impact<br>of metal loading (on the support) and its relation to degradation (lifetime) remain unclear. The<br>limited research on these parameters stems from synthetic difficulties and lack of in situ<br>analytics. This study addresses these challenges by synthesizing 2D and 3D Pt/C model catalyst<br>systems via two precise routes and systematically varying the loading. Pt dissolution was<br>monitored using on-line inductively coupled plasma mass spectrometry (on-line-ICP-MS), while<br>X-ray spectroscopy techniques were applied to establish the oxidation states of Pt in correlation<br>with metal loading. Dissolution trends emerge which can be explained by three particle<br>proximity dependent mechanisms: (1) shifts in the Nernst dissolution potential, (2) redeposition,<br>and (3) alteration of Pt oxidation states. These results identify engineering limitations, which<br>should be considered by researchers in fuel cell development and related fields. <br>


MRS Bulletin ◽  
2005 ◽  
Vol 30 (8) ◽  
pp. 587-590 ◽  
Author(s):  
Raj G. Rajendran

AbstractThe concept of using an ion-exchange membrane as an electrolyte separator for polymer electrolyte membrane (PEM) fuel cells was first reported by General Electric in 1955. However, a real breakthrough in PEM fuel cell technology occurred in the mid-1960s after DuPont introduced Nafion®, a perfluorosulfonic acid membrane. Due to their inherent chemical, thermal, and oxidative stability, perfluorosulfonic acid membranes displaced unstable polystyrene sulfonic acid membranes.Today, Nafion® and other related perfluorosulfonic acid membranes are considered to be the state of the art for PEM fuel cell technology. Although perfluorosulfonic acid membrane structures are preferred today, structural improvements are still needed to accommodate the increasing demands of fuel cell systems for specific applications. Higher performance, lower cost, greater durability, better water management, the ability to perform at higher temperatures, and flexibility in operating with a wide range of fuels are some of the challenges that need to be overcome before widespread commercial adoption of the technology can be realized. The present article will highlight the membrane properties relevant to PEM fuel cell systems, the development history of perfluorosulfonic acid membranes, and the current status of R&D activities in PEM technology.


Sign in / Sign up

Export Citation Format

Share Document