Strain rate distribution near welding interface for different collision angles in explosive welding

2008 ◽  
Vol 35 (1) ◽  
pp. 3-9 ◽  
Author(s):  
H.H. Yan ◽  
X.J. Li
2019 ◽  
Vol 22 (2) ◽  
pp. 136-142
Author(s):  
Osama Ali Kadhim ◽  
Fathi A. Alshamma

In this paper, a quick stop device technique and the streamline model were employed to study the chip formation in metal cutting. The behavior of chip deformation at the primary shear zone was described by this model. Orthogonal test of turning process over a workpiece of the 6061-T6 aluminum alloy at different cutting speeds was carried out. The results of the equivalent strain rate and cumulative plastic strain were used to describe the complexity of chip formation. Finite element analysis by ABAQUS/explicit package was also employed to verify the streamline model. Some behavior of formation and strain rate distribution differs from the experimental results, but the overall trend and maximum results are approximately close. In addition, the quick stop device technique is described in detail. Which could be used in other kinds of studies, such as the metallurgical observation.


Author(s):  
Brian Davis ◽  
David Dabrow ◽  
Peter Ifju ◽  
Guoxian Xiao ◽  
Steven Y. Liang ◽  
...  

Machining is among the most versatile material removal processes in the manufacturing industry. To better optimize the machining process, the knowledge of shear strains and shear strain rates within the primary shear zone (PSZ) during chip formation has been of great interest. The objective of this study is to study the strain and strain rate progression within the PSZ both in the chip flow direction and along the thickness direction during machining equal channel angular extrusion (ECAE) processed titanium (Ti). ECAE-processed ultrafine-grained Ti has been machined at cutting speeds of 0.1 and 0.5 m/s, and the shear strain and the shear strain rate have been determined using high speed imaging and digital image correlation (DIC). It is found that the chip morphology is saw-tooth at 0.1 m/s while continuous at 0.5 m/s. The cumulative shear strain and the incremental shear strain rate of the saw-tooth chip morphology can reach approximately 3.9 and 2.4 × 103 s−1, respectively, and those of the continuous chip morphology may be approximately 1.3 and 5.0 × 103 s−1, respectively. There is a distinct peak shift in the shear strain rate distribution during saw-tooth chip formation while there is a stable peak position of the strain rate distribution during continuous chip formation. The PSZ thickness during saw-tooth chip formation is more localized and smaller than that during continuous chip formation (28 versus 35 μm).


2021 ◽  
Author(s):  
Gianina Meneses ◽  
John Onwuemeka ◽  
Rebecca Harrington ◽  
Yajing Liu

<p><span>Continuous and increasingly dense geodetic monitoring in the last couple of decades has enabled resolving deformation heterogeneities in intraplate environments, where seismic hazard assessment is inhibited by low historical seismicity rates, but damaging earthquakes do occur infrequently. It has also revealed the degree of uncertainty with which we have been able to constrain how elastic strain accumulates in mid-continental faults. The St. Lawrence Valley (SLV) in east North America is the most seismically active region along a paleo-rift system in eastern Canada, and is also located around the general post-glacial rebound hinge-line. Earthquakes along the SLV are mainly located in three active seismic zones, from south to north, the Western Quebec, Charlevoix, and Lower St Lawrence Seismic Zones, but the mechanism for the spatial clustering is not clear. Along the SLV, the crustal deformation or strain rate has been calculated to date as part of global estimations or discrete regional measurements, at a resolution that does not enable detection of small-wavelength features. The aim of this work is to create a high-resolution strain rate map that can detect local changes of the deformation style to quantify possible correlation with intraplate seismicity, taking into account the slow tectonic loading rate and the interaction between ancient basement geological structures and glacial isostatic adjustment. We calculate a preliminary strain rate map with high spatial resolution using publicly available continuous GPS data from Nevada Geodetic Laboratory (NGL), with time series covering up to 20 years. We use a 2D velocity interpolation method: </span><span><em>gpsgridder</em></span><span>, a module from Generic Mapping Tools (GMT) that grids discrete vectors using a model based on 2D elasticity. This approach includes velocity uncertainties and performs better than biharmonic interpolations for sparse vectors because it considers coupling between the velocity components. We test spatial resolution of the method and station configuration using an approach similar to checkerboard tests applied in seismic tomographic inversions. In addition, the resolution analysis gives a spatial quantification of the reliability of the obtained continuous strain rate distribution, which is key to identify zones that can be improved in terms of GPS coverage including campaign </span><span>data</span><span>. We will show that </span><span>for our 2-D velocity field and using a mesh grid of 0.25° X 0.25°, </span><span>the method </span><span>begins</span><span> to resolve</span><span> checkerboard lengths of ~50 km </span><span>in</span><span> regions where the average spacing between stations is ~40 km. Finally, we</span> <span>will present the length resolution of the station configuration in the SLV, along with the interpolated strain rate map.</span></p>


2019 ◽  
Vol 46 (10) ◽  
pp. 5170-5179 ◽  
Author(s):  
Hua Wang ◽  
Tim J. Wright ◽  
Jing Liu‐Zeng ◽  
Lincai Peng

Sign in / Sign up

Export Citation Format

Share Document