cutting speeds
Recently Published Documents


TOTAL DOCUMENTS

409
(FIVE YEARS 76)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
Mehmet A Erden ◽  
Mahir Akgün

In this work, it was investigated the effect of molybdenum (Mo) addition on machinability, mechanical properties, and microstructure of Cr steels produced by using powder metallurgy method. Tensile and hardness experiments were applied to define the mechanical properties of the produced Cr-PM steels. The machining experiments have been also performed without coolant on a CNC vertical machining center at three different cutting speeds (150, 210, and 270 m/min), two different feed rates (0.4 and 0.8 mm/tooth), and constant depth of cut (0.5 mm). The machinability of the alloys was evaluated in regard to surface roughness (Ra) and tool wear (Vb). The results indicated that that Cr-PM steel with 5% Mo addition by weight had the highest yield, tensile strength, and hardness, and the best surface quality was obtained in this sample in terms of surface roughness. However, according to Vb measurement results, the cutting performance of the cutting inserts wasnegative affected by MoC(N), CrC(N), and MoCrC(N) precipitates formed in the microstructure of PM steel.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7861
Author(s):  
Yali Zhang ◽  
Mingyang Wu ◽  
Keke Liu ◽  
Jianyu Zhang

The nickel-based superalloy is widely used in aerospace. It is a typical difficult-to-cut material with poor plasticity. During the cutting process, the fluctuation of the cutting force caused by the change of cutting conditions can aggravate tool vibration, thereby reducing the surface quality of the machined workpiece. However, the emergence of high-pressure cooling technology provides technical support for overcoming the difficulty in superalloy processing. Therefore, it is of great significance to optimize the tool vibration and surface roughness of cutting GH4169 under high-pressure cooling. Taking GH4169 as the research object, the single-factor and orthogonal high-pressure cooling cutting experiments were conducted firstly in this paper. Then, the methods of the main effect diagram and response surface were applied to analyze the impact of cutting speed, feed rate, cutting depth, and cooling pressure on the three-way tool vibration. Next, MATLAB was adopted to draw the frequency spectrum of radial tool vibration at different cutting speeds, and the relationship between chip morphology, tool vibration, and workpiece surface roughness at different cutting speeds was discussed. Based on this, a mathematical model of radial tool cutting vibration and surface roughness related to the cutting amount and cooling pressure was established. Support vector machine (SVM) was applied to make predictions. Meanwhile, the non-dominated sorting genetic algorithm with an elitist strategy was adopted for multi-objective optimization, and the optimization results were verified through experiments. The results indicated that the feed rate and cutting depth had a great impact on the tool vibration and surface roughness. The established mathematical model was accurate and effective for optimizing the cutting parameters. These results are of great significance to improve the cutting stability and the quality of machined surface.


2021 ◽  
Author(s):  
Zoltán Pálmai ◽  
János Kundrák ◽  
Csaba Felhő

Abstract Production technology planning requires information on tool life T and its relation to cutting speed v. As the Taylor formula often cannot be linearized on an lg-lg scale, a general tool life function has been developed for describing a v-T function with a convex-concave part. Using catastrophe theory, an analogy is established between the general tool life function and the cusp catastrophe, allowing topological mapping of the general v-T function. Results were verified by machinability tests in the turning of C35 and C60 conventional and specially deoxidized C-steels during steelmaking. It was found that in the convex-concave section of this function, 2–3 cutting speeds can be selected for a given tool life, which is advantageous for harmonizing tool changes in multi-operation technology.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7242
Author(s):  
Magdalena Zawada-Michałowska ◽  
Paweł Pieśko ◽  
Jerzy Józwik ◽  
Stanisław Legutko ◽  
Leon Kukiełka

In modern constructions, especially aircraft, the aim is to minimize the weight of the components used. This necessitates the use of innovative construction materials, or the production of these parts with ever-decreasing wall thicknesses. To simplify assembly and improve strength properties, so-called structural elements are being used in the form of monolithic elements, which are replacing the assemblies of parts joined by, for example, riveting. These structures often have a complex, thin-walled geometry with deep pockets. This paper attempts to assess the accuracy of manufacturing thin-walled elements, in the shape of walls with different geometries, made of various aluminum alloys. Machining tests were conducted at different cutting speeds, which allowed comparisons of the geometric accuracy of parts manufactured under conventional and high-speed cutting conditions. Based on the result obtained, it was found that the elements made of EN AW-7075 T651 alloy underwent the greatest deformations during machining in comparison to that of other two materials (EN AW-6082 T651 and EN AC-43000). An increase in the geometrical accuracy of the manufactured elements was also observed with the increase in the cutting speed for the HSC range. Hence, to minimize the postmachining deformation of thin-walled elements, the use of high-speed cutting is justified.


2021 ◽  
Vol 1208 (1) ◽  
pp. 012005
Author(s):  
Atif Hodžić ◽  
Elmasa Aldžić ◽  
Damir Hodžić

Abstract Paper presents the design of experiment and determining mathematical model to calculate roughness parameter of wood planned surface. For design of experiment three different types of solid wood were taken and processed on the planner with three different displacements and three different cutting speeds. After measuring the roughness parameter Rz, experimental results were obtained on the basis of which the central composite plan of the experiment was made. Based on that, a model of roughness parameter Rz was made, which is adequate and with high accuracy. The significance of the model coefficients was determined using the R software and the results were presented using the Design Expert software.


Author(s):  
Abdullah Altin

In this research, we had studied the sensitivity for machining of cobalt-based superalloy Haynes 188 with ceramic cutting tool. The investigation had focused on the effects of the cutting speed, on the cutting forces, and on the surface roughness based on Taguchi’s experimental design. The effects of machining parameters were determined using Taguchi’s L27 orthogonal array. The signal-to-noise ratio was calculated for the average of surface roughness and the cutting forces, and the smaller were used to determine the optimal cutting conditions. The analysis of variance and the signal-to-noise ratio had effects on the parameters on both surface roughness and cutting. Three different types of cutting tools had been used in the experiment, namely KYON 4300, KYS 25, and KYS 30. The cutting force of Fz was considered to be the main cutting force. Depending on the material which had been used as cutting tool, the Fz had the lowest cutting speed and the lowest surface roughness with the KYS25 ceramic tool. The cutting force and the surface roughness of KYON 4300 cutting tool had shown better performance than other cutting tools. The flank wear and notch were found to be more effective in the experiments. The long chips were removed at low and medium cutting speeds, while the sawdust with one edge and narrow pitch at high cutting speeds was obtained.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5697
Author(s):  
Tarek Elgnemi ◽  
Victor Songmene ◽  
Jules Kouam ◽  
Martin B.G. Jun ◽  
Agnes Marie Samuel

This article presents the influence of machining conditions on typical process performance indicators, namely cutting force, specific cutting energy, cutting temperature, tool wear, and fine dust emission during dry milling of CFRPs. The main goal is to determine the machining process window for obtaining quality parts with acceptable tool performance and limited dust emission. For achieving this, the cutting temperature was examined using analytical and empirical models, and systematic cutting experiments were conducted to assess the reliability of the theoretical predictions. A full factorial design was used for the experimental design. The experiments were conducted on a CNC milling machine with cutting speeds of 10,000, 15,000, and 20,000 rpm and feed rates of 2, 4, and 6 µm/tooth. Based on the results, it was ascertained that spindle speed significantly affects the cutting temperature and fine particle emission while cutting force, specific cutting energy, and tool wear are influenced by the feed rate. The optimal conditions for cutting force and tool wear were observed at a cutting speed of 10,000 rpm. The cutting temperature did not exceed the glass transition temperature for the cutting speeds tested and feed rates used. The fine particles emitted ranged from 0.5 to 10 µm aerodynamic diameters with a maximum concentration of 2776.6 particles for those of 0.5 µm diameters. Finally, results of the experimental optimization are presented, and the model is validated. The results obtained may be used to better understand specific phenomena associated with the milling of CFRPs and provide the means to select effective milling parameters to improve the technology and economics of the process.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1679
Author(s):  
Guosheng Su ◽  
Yuhao Wang ◽  
Zhitao Han ◽  
Peirong Zhang ◽  
Hongxia Zhang ◽  
...  

The contact stress and heating effect between the cutting tool and workpiece in metal machining is symmetrical. However, the symmetry may be destroyed by changes in the workpiece material mechanical properties, such as ductility. The goal of this study is to reveal the wear characteristics of the cutting tool in machining a ductile metal with the cutting speed at which the metal is embrittled by the high-strain-rate-embrittle effect (HSREE). Orthogonal high-speed turning experiments were carried out. Pure iron type DT8 was cut at different cutting speeds, ranging from 1000 m/min to 9000 m/min. The shape and morphology of the chips obtained in the experiment were observed and analyzed by optical microscope and scanning electron microscope (SEM). Tool wear characteristics at different cutting speeds were observed. It shows that the pure iron becomes completely brittle when the cutting speed is higher than 8000 m/min. On the rake face, the coating of the cutting tool bursts apart and peels off. A matrix crack originates in the cutting edge or rake face and extends to the flank face of the cutting tool. The effects of HSREE on the tool wear is discussed. The findings of this study are helpful for choosing a suitable tool for brittle cutting of the ductile metal pure iron with very high cutting speed and solving the problems in machining due to its high ductility and high stickiness.


Author(s):  
Babatunde Olayinka Oyefeso ◽  
Akintunde Akintola ◽  
Monisola Grace Afolabi ◽  
Clement Adesoji Ogunlade ◽  
Oluwaseyi Kayode Fadele ◽  
...  

This study investigated the influence of the moisture content and speed on the cutting force and energy of tannia cormels using the response surface methodology (RSM). The moisture content and cutting speed were varied over five levels each [95.79, 113.68, 136.68, 168.42, 242.11% moisture content (dry basis) and 10, 15, 20, 25, 30 mm×min<sup>–1</sup>, respectively]. The highest and lowest cutting forces were 114.09 and 63.99 N at the corresponding moisture contents of 168.42 and 113.68% and at cutting speeds of 10 and 20 mm×min<sup>–1</sup>, respectively. The highest and lowest cutting energies of 0.92 and 0.49 J were both obtained at a 136.68% moisture content, at the 10 and 20 mm×min<sup>–1</sup> cutting speeds, respectively. The regression models for predicting the cutting force and energy as a function of the cutting speed and moisture content showed that there was no linear relationship between the investigated properties and the independent variables considered which could be attributed to the non-homogeneous nature of tannia cormels. The optimum cutting force and energy were 72.89 N and 0.60 J, respectively, at a 95.79% moisture content and a 22.33 mm×min<sup>–1 </sup>speed with a desirability of 0.80. These findings could serve as a guide for the development of chipping and cutting machines for tannia cormels.


2021 ◽  
Vol 3 (1) ◽  
pp. 65-72
Author(s):  
Ardyan - ◽  
Erwansyah - ◽  
Yang Fitri Arriyani

The benchmark for the results of the machining process can be seen from the results of the products, one of which is the level of surface smoothness. The purpose of this experimental research is to find out how much cutting speed (Vc) and depth of cutting produce a workpiece with the smoothest level of surface roughness for the turning process carried out by students at the Bangka Belitung State Manufacturing Polytechnic Workshop. This research is using experimental method. The cutting speeds (Vc) used were 23 m/min, 24 m/min, 25 m/min, the cutting depths used were 0.5 mm, 0.8 mm, and 1.0 mm and the feeding speed was set at 0.040 mm/rev. The results showed that the best turning results using a cutting speed (Vc) of 23 m/min was using a cutting depth of 0.5 mm with a roughness value (Ra) of 1.372 m, using a cutting speed (Vc) of 24 m/min using a depth of cut. 0.5 mm with a roughness value (Ra) of 1.189 m and using a cutting speed (Vc) of 25 m/min using a depth of 0.5 mm with a surface roughness value (Ra) of 3.14 m. The lowest value for the level of surface roughness of the turning process was obtained using a cutting speed (Vc) of 24 m/min with a depth of 0.5 mm with a surface roughness value (Ra) of 1.189 m.


Sign in / Sign up

Export Citation Format

Share Document