scholarly journals An An Analysis of Strain Rate Distribution Using Streamline Model and A Quick Stop Device in Metal Cutting

2019 ◽  
Vol 22 (2) ◽  
pp. 136-142
Author(s):  
Osama Ali Kadhim ◽  
Fathi A. Alshamma

In this paper, a quick stop device technique and the streamline model were employed to study the chip formation in metal cutting. The behavior of chip deformation at the primary shear zone was described by this model. Orthogonal test of turning process over a workpiece of the 6061-T6 aluminum alloy at different cutting speeds was carried out. The results of the equivalent strain rate and cumulative plastic strain were used to describe the complexity of chip formation. Finite element analysis by ABAQUS/explicit package was also employed to verify the streamline model. Some behavior of formation and strain rate distribution differs from the experimental results, but the overall trend and maximum results are approximately close. In addition, the quick stop device technique is described in detail. Which could be used in other kinds of studies, such as the metallurgical observation.

Author(s):  
Brian Davis ◽  
David Dabrow ◽  
Peter Ifju ◽  
Guoxian Xiao ◽  
Steven Y. Liang ◽  
...  

Machining is among the most versatile material removal processes in the manufacturing industry. To better optimize the machining process, the knowledge of shear strains and shear strain rates within the primary shear zone (PSZ) during chip formation has been of great interest. The objective of this study is to study the strain and strain rate progression within the PSZ both in the chip flow direction and along the thickness direction during machining equal channel angular extrusion (ECAE) processed titanium (Ti). ECAE-processed ultrafine-grained Ti has been machined at cutting speeds of 0.1 and 0.5 m/s, and the shear strain and the shear strain rate have been determined using high speed imaging and digital image correlation (DIC). It is found that the chip morphology is saw-tooth at 0.1 m/s while continuous at 0.5 m/s. The cumulative shear strain and the incremental shear strain rate of the saw-tooth chip morphology can reach approximately 3.9 and 2.4 × 103 s−1, respectively, and those of the continuous chip morphology may be approximately 1.3 and 5.0 × 103 s−1, respectively. There is a distinct peak shift in the shear strain rate distribution during saw-tooth chip formation while there is a stable peak position of the strain rate distribution during continuous chip formation. The PSZ thickness during saw-tooth chip formation is more localized and smaller than that during continuous chip formation (28 versus 35 μm).


Author(s):  
Vasant Pednekar ◽  
Vis Madhavan ◽  
Amir H. Adibi-Sedeh

The fraction of heat generated in the primary shear zone that is conducted into the workpiece is a key factor in the calculation of the shear plane temperature and in calculating the cutting forces based on material flow stress. Accurate analytical, numerical, or experimental determination of this heat partition coefficient is not available to date. This study utilizes a new approach to obtain the heat partition coefficient for the primary shear zone using results for strain, strain rate, and temperature distribution obtained from a coupled thermo-mechanical finite element analysis of machining. Different approaches, using strain rate and equivalent strain, are used for calculating the total plastic power in the primary shear zone and the heat generated by plastic deformation below the plane of the machined surface. The heat carried away by the workpiece is obtained by calculating the heat flow by convection in regions where the conduction is expected to be small. We have used an elastic perfectly plastic material model and constant thermal properties to mimic the assumptions used in analytical models. The fraction of the total heat generated in the primary shear zone that is conducted into the machined workpiece is found and compared to the prediction of different analytical models. It is found that for most of the cutting conditions, the values of heat partition coefficient are closest to those provided by Weiner’s model.


Author(s):  
Wolfgang Lortz ◽  
Radu Pavel

Abstract Metal cutting is a dynamic process with two types of friction: on the one hand, external friction between two different bodies, and on the other hand, an internal friction inside the same material, due to plastic flow. These two different types of friction lead to different chip formation processes. In the case of built-up-edge (BUE), low velocity creates low energy, resulting in a self-hardening effect with BUE. With increasing velocity, the energy will increase and will result in high temperatures with a built-up-layer (BUL). Furthermore, under special circumstances, friction will lead to a self-blockade (a self-blocking state). This situation describes the third stage in metal plastic flow — the creation of a segmental chip. In this case the internal friction takes over. One question arises: “How can we determine these two types of different friction?” For solving these phenomena new fundamental equations based on mathematics, physics and material behavior have to be developed. This paper presents newly developed equations, which deliver the theoretical distribution of yield shear stress as well as strain rate with corresponding grid deformation pattern in metal plastic flow. For an actual cut, the plastic deformation pattern remains when the process is stopped, and therefore the theoretical result can be compared with cross-sections of the relevant chip formation areas — contrary to outputs such as stress, strain rate and temperatures which are all functions of position and time. All this will be shown and discussed in the paper, and stands in good agreement with experimental results.


1988 ◽  
Vol 110 (4) ◽  
pp. 322-325 ◽  
Author(s):  
B. E. Klamecki ◽  
S. Kim

The effects of the stress state transition from plane stress at the workpiece surface to plane strain in the central region of the chip formation zone were studied. A finite element analysis of the incipient chip formation process was performed. The model included heat generation and temperature induced workpiece material property changes. The primary result is that the unique high strain, high strain rate, large free surface characteristics of the metal cutting process can result in qualitatively different deformation behavior across the shear zone. Temperatures are higher in the regions near the surface of the workpiece than in the central region. In extreme cases, this will result in strain hardening behavior in the plain strain regions and thermal softening of the work material near the surface.


2012 ◽  
Vol 268-270 ◽  
pp. 391-395
Author(s):  
Shu Mei Lou ◽  
Guo Liang Xing ◽  
Sheng Xue Qin ◽  
Lin Jing Xiao

Extrusions of a 6061 aluminum rectangular tube using porthole dies with three assigned different split ratios were simulated by the software DEFORM-3D based on Finite element method. The distributions of stress, equivalent strain rate, temperature, velocity of the deformation materials and the mold stress during the three extrusion processes were obtained, respectively. By analyzing the distributions of those fields, the most reasonable split ratio is selected and then the die structure is modified.


2021 ◽  
Author(s):  
Gianina Meneses ◽  
John Onwuemeka ◽  
Rebecca Harrington ◽  
Yajing Liu

<p><span>Continuous and increasingly dense geodetic monitoring in the last couple of decades has enabled resolving deformation heterogeneities in intraplate environments, where seismic hazard assessment is inhibited by low historical seismicity rates, but damaging earthquakes do occur infrequently. It has also revealed the degree of uncertainty with which we have been able to constrain how elastic strain accumulates in mid-continental faults. The St. Lawrence Valley (SLV) in east North America is the most seismically active region along a paleo-rift system in eastern Canada, and is also located around the general post-glacial rebound hinge-line. Earthquakes along the SLV are mainly located in three active seismic zones, from south to north, the Western Quebec, Charlevoix, and Lower St Lawrence Seismic Zones, but the mechanism for the spatial clustering is not clear. Along the SLV, the crustal deformation or strain rate has been calculated to date as part of global estimations or discrete regional measurements, at a resolution that does not enable detection of small-wavelength features. The aim of this work is to create a high-resolution strain rate map that can detect local changes of the deformation style to quantify possible correlation with intraplate seismicity, taking into account the slow tectonic loading rate and the interaction between ancient basement geological structures and glacial isostatic adjustment. We calculate a preliminary strain rate map with high spatial resolution using publicly available continuous GPS data from Nevada Geodetic Laboratory (NGL), with time series covering up to 20 years. We use a 2D velocity interpolation method: </span><span><em>gpsgridder</em></span><span>, a module from Generic Mapping Tools (GMT) that grids discrete vectors using a model based on 2D elasticity. This approach includes velocity uncertainties and performs better than biharmonic interpolations for sparse vectors because it considers coupling between the velocity components. We test spatial resolution of the method and station configuration using an approach similar to checkerboard tests applied in seismic tomographic inversions. In addition, the resolution analysis gives a spatial quantification of the reliability of the obtained continuous strain rate distribution, which is key to identify zones that can be improved in terms of GPS coverage including campaign </span><span>data</span><span>. We will show that </span><span>for our 2-D velocity field and using a mesh grid of 0.25° X 0.25°, </span><span>the method </span><span>begins</span><span> to resolve</span><span> checkerboard lengths of ~50 km </span><span>in</span><span> regions where the average spacing between stations is ~40 km. Finally, we</span> <span>will present the length resolution of the station configuration in the SLV, along with the interpolated strain rate map.</span></p>


Sign in / Sign up

Export Citation Format

Share Document