welding interface
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 19)

H-INDEX

9
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1800
Author(s):  
Elvina R. Shayakhmetova ◽  
Mariya A. Murzinova ◽  
Ayrat A. Nazarov

Solid state joints of samples of coarse-grained (CG) and ultrafine-grained (UFG) nickel have been obtained for the first time using spot ultrasonic welding (USW). The UFG structure in disk-shaped samples was processed by means of high-pressure torsion (HPT). On the basis of lap shear tests, the optimal values of the clamping force resulting in the highest values of the joint strength are determined. The microstructures in the weld joints obtained at optimal parameters of USW are characterized by scanning electron microscopy. It is shown that during ultrasonic welding of coarse-grained nickel, a thin layer with an UFG microstructure is formed near the weld surfaces. The bulks of sheets retain the CG microstructure, but a significant dislocation activity is observed in these regions. During USW of samples having an UFG initial microstructure, significant grain growth occurs. Fine grains are observed only along the welding interface. An average lap shear strength of 97 MPa was obtained by welding the UFG samples, which was approximately 40% higher than the strength of samples processed by welding coarse-grained sheets (70 MPa). It is concluded that higher strength weld joints can be obtained by using sheets with the UFG structure as compared to the CG sheets.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6620
Author(s):  
Bram C. P. Jongbloed ◽  
Julie J. E. Teuwen ◽  
Rinze Benedictus ◽  
Irene Fernandez Villegas

Continuous ultrasonic welding is a promising technique for joining thermoplastic composites structures together. The aim of this study was to gain further insight into what causes higher through-the-thickness heating in continuous ultrasonic welding of thermoplastic composites as compared to the static process. Thermocouples were used to measure temperature evolutions at the welding interface and within the adherends. To understand the mechanisms causing the observed temperature behaviours, the results were compared to temperature measurements from an equivalent static welding process and to the predictions from a simplified heat transfer model. Despite the significantly higher temperatures measured at the welding interface for the continuous process, viscoelastic bulk heat generation and not thermal conduction from the interface was identified as the main cause of higher through-the-thickness heating in the top adherend. Interestingly the top adherend seemed to absorb most of the vibrational energy in the continuous process as opposed to a more balanced energy share between the top and bottom adherend in the static process. Finally, the higher temperatures at the welding interface in continuous ultrasonic welding were attributed to pre-heating of the energy director due to the vibrations being transmitted downstream of the sonotrode, to reduced squeeze-flow of energy director due to the larger adherend size, and to heat flux originating downstream as the welding process continues.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4969
Author(s):  
Yuhyeong Jeong ◽  
Giseung Shin ◽  
Choo Woong ◽  
Jeoung Han Kim ◽  
Jonghun Yoon

This paper mainly demonstrates an advanced type of the vaporizing foil actuator welding (VFAW) process between GPa-grade steel (TRIP1180) and aluminum alloy (AA5052-H32) without applying standoff. To secure a flying distance during the VFAW process, the preformed target sheet shaped like a circular indentation has been utilized. It is necessary to optimize process parameters integrated with geometrical design of the preform since the welding strength can be decreased beyond the optimum input energy in the standoff-free VFAW process. The welded surface was evaluated by SEM-EDS, XRD, EBDS, and TEM to analyze the welding mechanism and composition at the welding interface. The diffusion zone including the AlFe3 phase was observed at the welded interface which has high grain density due to the high-speed impact by increasing the welding strength, which leads to the perfect welding between the dissimilar materials.


2021 ◽  
Vol 1042 ◽  
pp. 3-8
Author(s):  
Mitsuhiro Watanabe ◽  
Shinpei Sasako

Dissimilar metal lap joining of A5052 aluminum alloy plate and C1100 pure copper plate was performed by using friction stir spot welding. The rotating welding tool, which was composed of a probe part and a shoulder part, was plunged from the aluminum alloy plate which was overlapped on the copper plate, and residual aluminum alloy thickness under the probe part of the welding tool after plunging of the welding tool was controlled in the range from 0 mm to 0.4 mm. The strength of the welding interface was evaluated by using tensile-shear test. Microstructure of the welding interface was examined by using an optical microscope and a field emission scanning electron microscope. The welding was achieved at the residual aluminum alloy thickness under the probe part of the welding tool below 0.3 mm. The welded area was formed at aluminum alloy/copper interface located under the probe part of the welding tool, and its width increased with decreasing the residual aluminum alloy thickness. A characteristic laminate structure was produced in the copper matrix near the welding interface. In the joint fabricated at the residual aluminum alloy thickness below 0.1 mm, hook of Cu was formed at edge of the welded area. The fracture did not occur at the welding interface. A remarkable improvement in strength was observed in the joint fabricated at the residual aluminum alloy thickness below 0.1 mm. The formation of laminate structure and hook is considered to result in joint strength improvement.


2021 ◽  
Author(s):  
Queen Tannous ◽  
Yves Bereaux ◽  
Pierre Mousseau ◽  
Anaïs Barasinski ◽  
Rémi Deterre ◽  
...  

In this paper, we present an innovative welding process for packaging applications developed by SEALESTER Company. For polymer films, studies have revealed that the welding interface must reach a specific temperature, known as “sealing initiation temperature”, to obtain a sealed joint. In this paper, we will be studying the effect of the process parameters on the evolution of temperature at the welding interface. For this purpose, thermocouples have been placed between the films at different points of the trajectory to measure the temperature evolution. Process parameters and temperature measurements were recorded in each experiment. Results show that the most influential parameters are the temperature and the linear velocity of the tool. Rotational frequency affects the heat distribution on the sealing surface. A minimum pressure must be applied. In conclusion, this new process can produce sealed polymer packages. Future work will consist of studying the quality of obtained seal in addition to optimization and control of the process.


Author(s):  
Yan Zhang ◽  
YiDi Gao ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract In this work, TA2/T2 was used as a composite interlayer to prevent the formation of brittle Ti-Fe intermetallics when joining TC4 Ti alloy to 304 stainless steel. The TA2/T2 (commercially pure Ti and Cu) composite interlayer was prepared by explosive welding. The laser was focused on the TC4-TA2 interface, which joined the TC4 and TA2 by fusion welding. At the TC4-TA2 interface, a weld zone was formed due to the mixing of molten TC4 and TA2. The laser was also focused on the T2-304 stainless steel interface, a weld zone was formed due to the mixing of molten T2 and 304 stainless steel. Composite interlayer TA/T2 was used not only to prevent the formation of Ti-Fe intermetallics during welding but also to improve microstructure and properties of the stainless steel–Ti alloy joint. The joint fractured at the TA2/T2 explosive welding interface with a maximum tensile strength of 428 MPa.


2021 ◽  
Author(s):  
Jian Wang ◽  
Xiao-jie Li ◽  
Yu-xin Wang

Abstract The aim of this work is to study the use of explosive welding to produce Niobium-Steel composite plate, which is used in nuclear industry equipment material manufacturing. The welding parameters was determined by weldability window and numerical simulation was used to predict the wave shape of the welding interface. The morphology of the interface wave was observed by scanning electron microscope. Component measurement around interface waves. The experimental samples were investigeted using mechanical tests. The results show that the explosion parameters optimized by theory and numerical simulation can be used to obtain a niobium-steel composite plate with better welding quality. It can be proved that the welding quality is better by observing the interface wave and testing the mechanical properties, it can be seen that the melting zone of the welding interface is composed of niobium and steel by the composition analysis instrument. The morphology of the welding interface wave is consistent with the numerical simulation results, and the numerical simulation shows the changes of temperature, strain, and stress during the welding process.


Author(s):  
Mohd Ridha Muhamad ◽  
Sufian Raja ◽  
Mohd Fadzil Jamaludin ◽  
Farazila Yusof ◽  
Yoshiaki Morisada ◽  
...  

Abstract Dissimilar materials joining between AZ31 magnesium alloy and SPHC mild steel with Al-Mg powder additives were successfully produced by friction stir welding process. Al-Mg powder additives were set in a gap between AZ31 and SPHC specimen's butt prior to welding. The experiments were performed for different weight percentages of Al-Mg powder additives at welding speeds of 25 mm/min, 50 mm/min and 100 mm/min with a constant tool rotational speed of 500 rpm. The effect of powder additives and welding speed on tensile strength, microhardness, characterization across welding interface and fracture morphology were investigated. Tensile test results showed significant enhancement of tensile strength of 150 MPa for 10% Al and Mg (balance) powder additives welded joint as compared to the tensile strength of 125 MPa obtained for welded joint without powder additives. The loss of aluminium in the alloy is compensated by Al-Mg powder addition during welding under a suitable heat input condition identified by varying welding speeds. Microstructural analysis revealed that the Al-Mg powder was well mixed and dispersed at the interface of the joint at a welding speed of 50 mm/min. Intermetallic compound detected in the welding interface contributed to the welding strength.


Sign in / Sign up

Export Citation Format

Share Document