Experimental and numerical study on the ballistic resistance of 6061-T651 aluminum alloy thin plates struck by different nose shapes of projectiles

Author(s):  
Yunfei Deng ◽  
Yong Zhang ◽  
Huapeng Wu ◽  
Xianglin Huang ◽  
Xinke Xiao ◽  
...  
2014 ◽  
Vol 02 (06) ◽  
pp. 425-430 ◽  
Author(s):  
O. Zinovieva ◽  
V. Romanova ◽  
R. Balokhonov ◽  
A. Zinoviev ◽  
Zh. Kovalevskaya

2014 ◽  
Vol 670-671 ◽  
pp. 824-828 ◽  
Author(s):  
Jiang Ren Lu ◽  
Xin Li Sun ◽  
Xing Hui Cai ◽  
San Qiang Dong ◽  
Guo Liang Wang

A lightweight sandwich composite armours has been established by comparing the ballistic resistance of the potential component materials. The ballistic-resistance properties of the armours under impacting by the bullet with 12.7mm diameter are also numerically investigated by using finite element software LS-DYNA. Numerical modeling is used to obtain an estimate for the ballistic limit velocity (V50) and simulate penetration processes. The focus is placed on the energy absorption capabilities of different component layers with same density per unit area. The influence of stacking sequence and thickness ratio of ceramic/fiber layer has been analyzed in detail. Results indicate that the composite armour having optimal thickness ratio of ceramic/fiber layer in the same density and its mass is 29% lighter than of 4340 steel target.


Sign in / Sign up

Export Citation Format

Share Document