ballistic limit velocity
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 15)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
pp. 089270572110420
Author(s):  
Bazle Z (Gama) Haque ◽  
John W Gillespie

Soft-ballistic sub-laminate (SBSL) made from ultra-high molecular weight polyethylene (UHMWPE) fibers in [0/90] stacking sequence are the building block of a multi-layer soft-ballistic armor pack (SBAP, aka Soft Armor). A systematic study of the perforation dynamics of a single layer SBSL and several multi-layer SBAPs (2, 3, 4, 8, 16, 24, 32 layers) is presented for the first time in the literature. A previously validated finite element model of transverse impact on a single layer is used to study the perforation mechanics of multi-layer SBAPs with friction between individual layers. Following the classical definition of ballistic limit velocity, a minimum perforation velocity has been determined for free-standing single layer SBSL and multi-layer SBAPs. For the multi-layer SBAPs, complete perforations have been identified as progressive perforation of individual layers through the thickness. The minimum perforation velocities of multi-layer SBAPS is linear with the areal density for the eight (8) layer target and thicker. Large deformation behavior and perforation mechanics of the SBAPs is discussed in detail.


2021 ◽  
Vol 1020 ◽  
pp. 49-54
Author(s):  
A. Mostafa

The present study introduces a numerical procedure to estimate the impact resistance of stainless steel 304 (SS 304) commonly used in producing security screens through calculation of the effective ballistic limit velocity (V50). Non-linear finite element (FE) analysis using ABAQUS FE software was performed to simulate the material response with wide variety of thicknesses under various impact scenarios. Three different techniques were employed to determine V50, including: simulation of SS 304 using material parameters obtained from coupons testings and impact residual velocity and energy based on FE analysis. The material plasticity and damage initiation and evolution under dynamic loading conditions were simulated using Johnson-Cook model, while Lambert-Jonas model was utilized in predicting the residual impact velocity and energy using robust data regression system. Very good correlation within the investigated methodologies was observed along with obvious proportional between V50and coupons’ thickness. The significance of the outcome of this investigation is the developing of feasible and economical approach to evaluate the impact resistance of SS 304 which will significantly contribute to the development of superior security screens.


2021 ◽  
Vol 83 (2) ◽  
pp. 137-150
Author(s):  
N.V. Baniсhuk ◽  
S.Yu. Ivanоva ◽  
K.Yu. Osipenko

An experimental study of the process of perforation of plates made of brittle materials by rigid strikers has been carried out. The strikers were accelerated to the required speed with a pneumatic gun. Both homogeneous plates and obstacles from several plates glued together, put together without gluing, or spaced relative to each other were considered as targets. The results of experiments on the perforation of plexiglass plates by rigid spherical bodies at impact velocities of 100–200 m/s are presented. Qualitative features of the fracture at different velocities of impact are revealed. For the samples considered, it was found that spaced plates reduce the velocity of the striker during penetration more effectively than the same plates putted together. A set of experiments were also carried out on perforation of two combined plates made of various brittle materials: plexiglass, ceramics, artificial stone (polyacryl, quartz) by a rigid spherical striker for a velocity range of 200–350 m/s. For each considered combination of plates, a ballistic limit (ballistic limit velocity, BLV, at which the striker penetrates the obstacle with zero exit speed) was experimentally established, which characterizes the protective properties of the barrier. The effect on the ballistic limit of the order of the layers was studied. As a result, it was found that for all selected pairs of materials, a larger ballistic limit was achieved when a less dense and less brittle plexiglass layer was located behind a denser plate (made of ceramic or artificial polyacrylic or quartz stone). The reverse order of the layers led to a decrease in the ballistic limit in all cases. Photographs illustrating the nature of the destruction of the plates are presented.


2020 ◽  
Vol 18 (2) ◽  
pp. 229
Author(s):  
Elias Randjbaran ◽  
Dayang L. Majid ◽  
Rizal Zahari ◽  
Mohamed T. H. Sultan ◽  
Norkhairunnisa Mazlan

Investigations of the angled ballistic impact behavior on Carbon Kevlar® Hybrid fabrics with assorted volumes of carbon nanotubes (CNTs) into epoxy are presented. The ballistic impact behavior of the epoxy composites with/without CNTs is compared. Individual impact studies are conducted on the composite plate made-up of Carbon Kevlar Hybrid fabrics with diverse volumes of CNTs. The plate was fabricated with eight layers of equal thickness arranged in different percentages of CNTs. A conical steel projectile is considered for a high velocity impact. The projectile is placed very close to the plate, at the centre and impacted with sundry speeds. The variation of the kinetic energy, the increase in the internal energy of the laminate and the decrease in the velocity of the projectile with disparate angles are also studied. Based on the results, the percentage of CNTs for the ballistic impact of each angle is suggested.  The solution is based on the target material properties at high ballistic impact resistance, the inclined impact and the CNT volumes. Using the ballistic limit velocity, contact duration at ballistic limit, surface thickness of target and the size of the damaged zone are predicted for fabric composites.


Author(s):  
P. Karthick ◽  
K. Ramajeyathilagam

The ballistic resistance of a thin aluminium plate was investigated against rigid hemispherical nosed projectile impact. The target span was varied as 68 mm, 100 mm, 150 mm and impacted normally by 19 mm diameter hemispherical nosed projectile. The residual velocity and ballistic limit velocity obtained from the numerical results using nonlinear finite element code LS-DYNA is compared with the experimental results available in the literature. Further, parametric study has been carried out for different projectile diameter with the same target span and validated with Recht and Ipson’s model. The ballistic limit has been decreasing with decrease in projectile diameter and it is also observed that ballistic limit of the target increases with increase in target span diameter.


2020 ◽  
Vol 70 (1) ◽  
pp. 82-89
Author(s):  
Beya Tahenti ◽  
Frederik Coghe ◽  
Rachid Nasri

The armour technologist conducts ballistic impact testing either for evaluating armour materials and systems or for studying material’s defeating mechanism. Most standards make use of the ballistic limit velocity for ballistic assessment. This is the bullet impact velocity that leads to the protection perforation in 50 per cent of the cases. Various models have been emerged to estimate this key metric. The present article summarises the popular models developed for ballistic limit estimation. An attempt is made to point out models’ strength and weakness. First, the experimental set-up used for that goal is displayed. Next, a concise overview of ballistic limit estimation methods is presented. Lastly, a discussion is dedicated to model’s comparison and analysis. This literature survey reveals that the main drawback of already existing methods is that they are purely statistical. Moreover, existing methods are based on the normality assumption of perforation velocities which tends from -infinity to infinity. The main conclusion of this survey is that the presented methods offer a comparable accuracy in estimating the ballistic limit velocity. However, a given variability is remarked when extreme values estimation is of interest, impact velocities leading to low and high perforation probability. Finally, existing models’ performances decay with the reduction of the experimental sample size which represent a constraining requirement in ballistic resistance assessment.


2020 ◽  
Vol 978 ◽  
pp. 245-249
Author(s):  
Rajole Sangamesh ◽  
Hiremath Shivashankar ◽  
K.S. Ravishankar ◽  
S.M. Kulkarni

This article focuses on the Finite Element (FE) analysis of the ballistic performance of the polymer composites consisting of natural rubber (NR), glass-epoxy (GE) and glass-rubber-epoxy (GRE) sandwich of different thicknesses (3, 6 and 9 mm) under the impact of the conical nose projectile for a velocity variation of (180, 220 and 260 m / s). FE modeling was carried out in direction to forecast the energy absorption, ballistic limit velocity and failure damage mode of the target materail. The significant influence of thickness, interlayer and sandwiching effect was studied: the lowest ballistic limit was obtained for 3 mm thick GE. Energy absorption capacity of GRE sandwich was highest among the natural rubber and GE. In future, the work can be extended for the experimental validation purpose, so that these polymer composite materials could be utilized to defence sector for bullet-proofing.


2020 ◽  
Vol 82 (1) ◽  
pp. 100-106
Author(s):  
A.V. Dubinsky

The field of application of Functionally Graded Materialsis steadily expanding, which stimulates research in the relevant areas. In relation to penetration mechanics, these are primarily experimental studies of multilayer barriers consisting of plates “in contact” with various mechanical properties. Despite intensive research, explicit formulas for integral penetration characteristics (penetration depth and ballistic limit) cannot be obtained, except for the case when sequential penetration of layers (barriers with large gaps between layers). In this article, explicit formulas for the depth of penetration into an semi-infinite shield and for the ballistic limit velocity applying penetration into a shield of a finite thickness are derived assuming that the hardness of the barrier material varies continuously depending on barrier depth. The theoretical analysis is based on a model that represents the normal stress at points on the surface of the penetrating body that are in contact with the barrier as a quadratic function of the normal component of local impactor velocity with a zero linear term (the Vitman - Stepanov model). Difference of the dynamic hardness in different points of impactor-barrier contact is taken into account. It is also assumed that the nose of the striker has the form of a straight circular cone and the initial stage of penetration when the striker is not completely immersed in the barrier is ignored.


Sign in / Sign up

Export Citation Format

Share Document