Synchronization of hyperchaotic systems with multiple unknown parameters and its application in secure communication

Optik ◽  
2016 ◽  
Vol 127 (5) ◽  
pp. 2502-2508 ◽  
Author(s):  
Jianbin He ◽  
Jianping Cai ◽  
Jie Lin
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Zhili Xiong ◽  
Shaocheng Qu ◽  
Jing Luo

This article investigates an adaptive multi-switching synchronization for two identical high-order memristor-based hyperchaotic systems with uncertain parameters. Firstly, the dynamic characteristics of two high-order memristor hyperchaotic systems with uncertain parameters are analyzed. Then, an adaptive multi-switching controller is designed to realize the multi-switching synchronization of the two high-order hyperchaotic systems, and the unknown parameters of the systems are identified to their true values. Furthermore, numerical simulation results testify the effectiveness of the proposed strategy. Finally, the proposed algorithm applied in secure communication of masking encryption and image encryption is validated by statistical analysis.


2020 ◽  
Vol 9 (3) ◽  
pp. 597-611
Author(s):  
Ayub Khan ◽  
Harindri Chaudhary

Abstract In this paper, we investigate a hybrid projective combination–combination synchronization scheme among four non-identical hyperchaotic systems via adaptive control method. Based on Lyapunov stability theory, the considered approach identifies the unknown parameters and determines the asymptotic stability globally. It is observed that various synchronization techniques, for instance, chaos control problem, combination synchronization, projective synchronization, etc. turn into particular cases of combination–combination synchronization. The proposed scheme is applicable to secure communication and information processing. Finally, numerical simulations are performed to demonstrate the effectivity and correctness of the considered technique by using MATLAB.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Baojie Zhang ◽  
Hongxing Li

Universal projective synchronization (UPS) of two chaotic systems is defined. Based on the Lyapunov stability theory, an adaptive control method is derived such that UPS of two different hyperchaotic systems with unknown parameters is realized, which is up to a scaling function matrix and three kinds of reference systems, respectively. Numerical simulations are used to verify the effectiveness of the scheme.


2017 ◽  
Vol 6 (4) ◽  
pp. 1-16 ◽  
Author(s):  
A. Almatroud Othman ◽  
M.S.M. Noorani ◽  
M. Mossa Al-sawalha

Function projective dual synchronization between two pairs of hyperchaotic systems with fully unknown parameters for drive and response systems is investigated. On the basis of the Lyapunov stability theory, a suitable and effective adaptive control law and parameters update rule for unknown parameters are designed, such that function projective dual synchronization between the hyperchaotic Chen system and the hyperchaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.


2008 ◽  
Vol 22 (24) ◽  
pp. 4175-4188 ◽  
Author(s):  
YANG TANG ◽  
JIAN-AN FANG ◽  
LIANG CHEN

In this paper, a simple and systematic adaptive feedback method for achieving lag projective stochastic perturbed synchronization of a new four-wing chaotic system with unknown parameters is presented. Moreover, a secure communication scheme based on the adaptive feedback lag projective synchronization of the new chaotic systems with stochastic perturbation and unknown parameters is presented. The simulation results show the feasibility of the proposed method.


2013 ◽  
Vol 27 (32) ◽  
pp. 1350197
Author(s):  
XING-YUAN WANG ◽  
SI-HUI JIANG ◽  
CHAO LUO

In this paper, a chaotic synchronization scheme is proposed to achieve adaptive synchronization between a novel hyperchaotic system and the hyperchaotic Chen system with fully unknown parameters. Based on the Lyapunov stability theory, an adaptive controller and parameter updating law are presented to synchronize the above two hyperchaotic systems. The corresponding theoretical proof is given and numerical simulations are presented to verify the effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document