Function Projective Dual Synchronization with Uncertain Parameters of Hyperchaotic Systems

2017 ◽  
Vol 6 (4) ◽  
pp. 1-16 ◽  
Author(s):  
A. Almatroud Othman ◽  
M.S.M. Noorani ◽  
M. Mossa Al-sawalha

Function projective dual synchronization between two pairs of hyperchaotic systems with fully unknown parameters for drive and response systems is investigated. On the basis of the Lyapunov stability theory, a suitable and effective adaptive control law and parameters update rule for unknown parameters are designed, such that function projective dual synchronization between the hyperchaotic Chen system and the hyperchaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.

2008 ◽  
Vol 22 (08) ◽  
pp. 1015-1023 ◽  
Author(s):  
XINGYUAN WANG ◽  
XIANGJUN WU

This paper studies the adaptive synchronization and parameter identification of an uncertain hyperchaotic Chen system. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical hyperchaotic Chen systems asymptotically synchronized. With this approach, the synchronization and parameter identification of the hyperchaotic Chen system with five uncertain parameters can be achieved simultaneously. Theoretical proof and numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Liping Chen ◽  
Shanbi Wei ◽  
Yi Chai ◽  
Ranchao Wu

Projective synchronization between two different fractional-order chaotic systems with fully unknown parameters for drive and response systems is investigated. On the basis of the stability theory of fractional-order differential equations, a suitable and effective adaptive control law and a parameter update rule for unknown parameters are designed, such that projective synchronization between the fractional-order chaotic Chen system and the fractional-order chaotic Lü system with unknown parameters is achieved. Theoretical analysis and numerical simulations are presented to demonstrate the validity and feasibility of the proposed method.


Author(s):  
H. Najafizadegan ◽  
M. Khoeiniha ◽  
H. Zarabadipour

In this paper, we investigate the chaos anti-synchronization between two identical and different chaotic systems with fully unknown parameters via adaptive control. Based on the Lyapunov stability theory, an adaptive control law and a parameter update rule for unknown parameters are designed such that the two different chaotic systems can be anti-synchronized asymptotically. Theoretical analysis and numerical simulations are shown to verify the results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Baojie Zhang ◽  
Hongxing Li

Universal projective synchronization (UPS) of two chaotic systems is defined. Based on the Lyapunov stability theory, an adaptive control method is derived such that UPS of two different hyperchaotic systems with unknown parameters is realized, which is up to a scaling function matrix and three kinds of reference systems, respectively. Numerical simulations are used to verify the effectiveness of the scheme.


Author(s):  
J Wang ◽  
M F Hsieh

This paper describes a vehicle stability control (VSC) system using a vehicle yaw-inertia- and mass-independent adaptive control law. As a primary vehicle active control system, VSC can significantly improve vehicle driving safety for passenger cars and enhance trajectory tracking accuracy for other applications such as autonomous, surveillance, and mobile robot vehicles. For the designs of vehicle dynamic control systems, vehicle yaw inertia and mass are two of the most important parameters. However, in practical applications, vehicle yaw inertia and mass often change with vehicle payload and load distribution. In this paper, an adaptive control law is proposed to treat the vehicle yaw inertia and mass as unknown parameters and automatically address their variations. For the proposed adaptive control law, asymptotic stability of the yaw rate tracking error was proved by a Lyapunov-like analysis for certain vehicle architectures under some reasonable assumptions. The performance of the yaw-inertia- and mass-independent adaptive VSC system was evaluated under several driving conditions (i.e. double lane changing on a slippery surface and braking on a split- μ surface tests) through simulation studies using a high-fidelity full-vehicle model provided by CarSim®.


2013 ◽  
Vol 27 (32) ◽  
pp. 1350197
Author(s):  
XING-YUAN WANG ◽  
SI-HUI JIANG ◽  
CHAO LUO

In this paper, a chaotic synchronization scheme is proposed to achieve adaptive synchronization between a novel hyperchaotic system and the hyperchaotic Chen system with fully unknown parameters. Based on the Lyapunov stability theory, an adaptive controller and parameter updating law are presented to synchronize the above two hyperchaotic systems. The corresponding theoretical proof is given and numerical simulations are presented to verify the effectiveness of the proposed scheme.


2022 ◽  
Vol 9 ◽  
Author(s):  
Shunjie Li ◽  
Yawen Wu ◽  
Gang Zheng

In this paper, the adaptive control design is investigated for the chaos synchronization of two identical hyperchaotic Liu systems. First, an adaptive control law with two inputs is proposed based on Lyapunov stability theory. Secondly, two other control schemes are obtained based on a further analysis of the proposed adaptive control law. Finally, numerical simulations are presented to validate the effectiveness and correctness of these results.


2013 ◽  
Vol 27 (21) ◽  
pp. 1350110
Author(s):  
JIAKUN ZHAO ◽  
YING WU

This work is concerned with the general methods for the function projective synchronization (FPS) of chaotic (or hyperchaotic) systems. The aim is to investigate the FPS of different chaotic (hyper-chaotic) systems with unknown parameters. The adaptive control law and the parameter update law are derived to make the states of two different chaotic systems asymptotically synchronized up to a desired scaling function by Lyapunov stability theory. The general approach for FPS of Chen hyperchaotic system and Lü system is provided. Numerical simulations are also presented to verify the effectiveness of the proposed scheme.


2011 ◽  
Vol 88-89 ◽  
pp. 88-92 ◽  
Author(s):  
Lu Juan Shen ◽  
Ye Bao ◽  
Jian Ping Cai

In this paper, a class of gun control system of tank is considered with uncertain parameters and the backlash-like hysteresis which modeled by a differential equation. An adaptive control law is designed with backstepping technique. Compared to exist results on tank gun control problem , in our control scheme, the effect of backlash hysteresis is considered completely than to be linearized simply and no knowledge is assumed on the uncertain parameters. the stability of closed loop system and the tracking performance can be guaranteed by this control law. Simulation studies show that this controller is effective.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 304-313 ◽  
Author(s):  
M. Mossa Al-Sawalha ◽  
Ayman Al-Sawalha

AbstractThe objective of this article is to implement and extend applications of adaptive control to anti-synchronize different fractional order chaotic and hyperchaotic dynamical systems. The sufficient conditions for achieving anti–synchronization are derived by using the Lyapunov stability theory and an analytic expression of the controller with its adaptive laws of parameters is shown. Theoretical analysis and numerical simulations are shown to verify the results.


Sign in / Sign up

Export Citation Format

Share Document