A new Sierpinski-based fractal photonic crystal fiber design with low dispersion and confinement loss

Optik ◽  
2021 ◽  
Vol 225 ◽  
pp. 165780
Author(s):  
D. Martínez-Muñoz ◽  
A. Ortiz-Mora ◽  
A. Dengra ◽  
A. Sarsa-Rubio ◽  
A. Díaz-Soriano
2021 ◽  
Author(s):  
Bibhatsu Kuiri ◽  
Bubai Dutta ◽  
Nilanjana Sarkar ◽  
Saikat Santra ◽  
Paulomi Mandal ◽  
...  

Abstract A newer and efficient solid core with air holes and ring based circular photonic crystal fiber (C-PCF) design is proposed, developed, and studied. The C-PCF structure with a ring core and three layers of air holes is developed to communicate terahertz frequency of the range of 1 THz to 3 THz. Finite element method (FEM) is used to optimize the position, shape and dimensions of air holes and refractive index (RI) of material for the proposed PCF design and check the efficiency to support different orbital angular momentum (OAM) modes for communication. Our novel designed C-PCF supports multiple stable modes with mode purity above 0.9. Confinement loss is in the range of 10-12 dB/cm, highest effective mode area in the order of 1 mm2 is achieved in the investigated study for 3 THz transmission. The study observes that the performance of PCF is strongly dependent on RI of core and cladding.


Author(s):  
Chao Liu ◽  
Liying Wang ◽  
Jianwei Wang ◽  
Sinuo An ◽  
Famei Wang ◽  
...  

A photonic crystal fiber (PCF) made of the cyclic-olefin copolymer (COC) with low dispersion and confinement loss, large-mode-area, and single-mode transmission for terahertz wave guiding is described. The characteristics of the PCF in the terahertz range are simulated and analyzed by the full-vector finite element method (FEM). The effects of the structural parameters on the performance of the terahertz PCF are also investigated. The effective mode field area of the PCF is as large as 1.22084 × 107 μm2 at a wavelength of 1,000 μm and a flat dispersion of 0.07669 ± 0.33258 ps/nm/km is obtained. A much lower confinement loss of 6.0253 × 10-16 dB/m is achieved. The single mode transmission over the entire terahertz wave band is described.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 122
Author(s):  
Fahad Ahmed Al-Zahrani ◽  
Md. Anowar Kabir

The orbital angular momentum (OAM) of light is used for increasing the optical communication capacity in the mode division multiplexing (MDM) technique. A novel and simple structure of ring-core photonic crystal fiber (RC-PCF) is proposed in this paper. The ring core is doped by the Schott sulfur difluoride material and the cladding region is composed of fused silica with one layer of well-patterned air-holes. The guiding of Terahertz (THz) OAM beams with 58 OAM modes over 0.70 THz (0.20 THz–0.90 THz) frequency is supported by this proposed RC-PCF. The OAM modes are well-separated for their large refractive index difference above 10−4. The dispersion profile of each mode is varied in the range of 0.23–7.77 ps/THz/cm. The ultra-low confinement loss around 10−9 dB/cm and better mode purity up to 0.932 is achieved by this RC-PCF. For these good properties, the proposed fiber is a promising candidate to be applied in the THz OAM transmission systems with high feasibility and high capacity.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Izaddeen Kabir Yakasai ◽  
Atta Rahman ◽  
Pg Emeroylariffion Abas ◽  
Feroza Begum

AbstractA porous core photonic crystal fiber (PCF) for transmitting terahertz waves is reported and characterized using finite element method. It is shown that by enveloping an octagonal core consisting of only circular air holes in a hexagonal cladding, it is possible to attain low effective material loss that is 73.8% lower than the bulk material absorption loss at 1.0 THz operating frequency. Moreover, a low confinement loss of 7.53×10–5 cm−1 and dispersion profile of 1.0823±0.06 ps/THz/cm within 0.7–1 THz are obtained using carefully selected geometrical design parameters. Other guiding properties such as single-mode operation, bending loss, and effective area are also investigated. The structural design of this porous core PCF is comparatively simple since it contains noncomplex lattices and circular shaped air holes; and therefore, may be implemented using existing fabrication techniques. Due to its auspicious guiding properties, the proposed fiber may be used in single mode terahertz imaging and other short distance terahertz applications.


Sign in / Sign up

Export Citation Format

Share Document