The determination of material parameters from superplastic free-bulging tests at constant pressure

2008 ◽  
Vol 48 (12-13) ◽  
pp. 1519-1522 ◽  
Author(s):  
G. Giuliano ◽  
S. Franchitti
2015 ◽  
Vol 217 ◽  
pp. 158-164 ◽  
Author(s):  
S.A. Aksenov ◽  
E.N. Chumachenko ◽  
A.V. Kolesnikov ◽  
S.A. Osipov

Author(s):  
Б. П. Савчук ◽  
Б. М. Савченко ◽  
Н. В. Сова ◽  
І. М. Костюк

Development of technology for the processing of cross liked EVA waste, followed by the use of polymer / polymer composite PVC / EVA as a filler. Method. The determination of the MFI was carried out in accordance with ISO 1133: 1997 on a capillary viscometer of constant pressure at a temperature of (190 ± 0,5) ° С and a weight of 2,16 kg. The thermostability  and  melting  point  are  determined  using  the  RM-200C  Hapro  rheometer  plastograph.  The mechanical properties were determined on a bursting machine according to the ASTM D638. Hardness - using  a  hard-gauge  with  a  Shore-D  scale,  the  density  by  hydrostatic  weighing  method  on  the  analytical scales RADWAG AS-X2.


1999 ◽  
Author(s):  
Pavel B. Nedanov ◽  
Suresh G. Advani ◽  
Shawn W. Walsh ◽  
William O. Ballata

Abstract VARTM and SCRIMP composite manufacturing processes use a highly permeable media to distribute the resin through the thickness of the composite. Hence, manufacturing simulations of resin flow in such processes requires reliable data for in-plane as well as transverse permeability. The goal of this study is to propose a method for simultaneous determination of the principal values of 3D-permeability tensor of fibrous reinforcements. The permeability components are calculated from experimental data, consisting of flow front position with time during resin impregnation in three dimensions from a radial source under constant pressure using the SMARTweave [Walsh (1993), Fink et al.(1995)] sensor system. Experimental results are compared with numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document