Evaluation of effect of flow stress characteristics of tubular material on forming limit in tube hydroforming process

2010 ◽  
Vol 50 (9) ◽  
pp. 753-764 ◽  
Author(s):  
Woo-Jin Song ◽  
Seong-Chan Heo ◽  
Tae-Wan Ku ◽  
Jeong Kim ◽  
Beom-Soo Kang
2011 ◽  
Vol 62 ◽  
pp. 21-35 ◽  
Author(s):  
Anis Ben Abdessalem ◽  
A. El Hami

In metal forming processes, different parameters (Material constants, geometric dimensions, loads …) exhibits unavoidable scatter that lead the process unreliable and unstable. In this paper, we interest particularly in tube hydroforming process (THP). This process consists to apply an inner pressure combined to an axial displacement to manufacture the part. During the manufacturing phase, inappropriate choice of the loading paths can lead to failure. Deterministic approaches are unable to optimize the process with taking into account to the uncertainty. In this work, we introduce the Reliability-Based Design Optimization (RBDO) to optimize the process under probabilistic considerations to ensure a high reliability level and stability during the manufacturing phase and avoid the occurrence of such plastic instability. Taking account of the uncertainty offer to the process a high stability associated with a low probability of failure. The definition of the objective function and the probabilistic constraints takes advantages from the Forming Limit Diagram (FLD) and the Forming Limit Stress Diagram (FLSD) used as a failure criterion to detect the occurrence of wrinkling, severe thinning, and necking. A THP is then introduced as an example to illustrate the proposed approach. The results show the robustness and efficiency of RBDO to improve thickness distribution and minimize the risk of potential failure modes.


2005 ◽  
Vol 128 (3) ◽  
pp. 402-407 ◽  
Author(s):  
Bing Li ◽  
Don R. Metzger ◽  
Tim J. Nye

Tube hydroforming is an attractive manufacturing process in the automotive industry because it has several advantages over alternative methods. In order to determine the reliability of the process, a new method to assess the probability of failure is proposed in this paper. The method is based on the reliability theory and the forming limit diagram, which has been extensively used in metal forming as the criteria of formability. From the forming limit band in the forming limit diagram, the reliability of the forming process can be evaluated. A tube hydroforming process of free bulging is then introduced as an example to illustrate the approach. The results show this technique to be an innovative approach to avoid failure during tube hydroforming.


2014 ◽  
Vol 72 (9-12) ◽  
pp. 1275-1286 ◽  
Author(s):  
M. Saboori ◽  
H. Champliaud ◽  
J. Gholipour ◽  
A. Gakwaya ◽  
J. Savoie ◽  
...  

2015 ◽  
Vol 651-653 ◽  
pp. 169-174 ◽  
Author(s):  
Temim Zribi ◽  
Ali Khalfallah ◽  
Hedi Belhadj Salah

The present paper aims to assess the accuracy of identification methods used in the evaluation of the flow stress relationship of tubular materials for hydroforming applications. Based on experimental data acquired from home designed and manufactured experimental tool and results collected from literature, flow stress parameters are determined using both analytical and inverse identification methods. The obtained results are coped to experimental measurements to validate the proposed approaches. It is shown from the analysis based on the comparative assessment of flow stress inferred from tube bulge test that, inverse parameter identification method is the appropriate methodology that contribute to a more accurate tube hydroforming characterization.


SIMULATION ◽  
2012 ◽  
Vol 88 (9) ◽  
pp. 1129-1137 ◽  
Author(s):  
A El Hami ◽  
B Radi ◽  
A Cherouat

In this paper, we are interested particularly in the tube hydroforming process (THP). This process consists of applying an inner pressure combined with an axial displacement to manufacture the part. During the manufacturing phase, inappropriate choice of the load paths can lead to failure. Deterministic approaches are unable to optimize the process by taking into account the uncertainty. So we introduce the reliability-based design optimization (RBDO) to optimize the process under probabilistic constraints to ensure a high reliability level and stability during the manufacturing phase and avoid the occurrence of such plastic instability. Taking some uncertainties into account the process is very stable and associated with a low failure probability. The definition of the objective function and the probabilistic constraints take advantage of the forming limit diagram (FLD) and the forming limit stress diagram (FLSD) used as a failure criterion to detect the occurrence of wrinkling, severe thinning and necking. To validate the proposed approach, the THP is then introduced as an example. The numerical results show the robustness and efficiency of the RBDO to improve thickness distribution and minimize the risk of potential failure modes.


Author(s):  
Bing Li ◽  
Don R. Metzger ◽  
T. J. Nye

Tube hydroforming has become an increasingly attractive manufacturing process in automotive industry due to it having several advantages over alternative methods. The forming limit diagram has been extensively used in metal forming as the criteria of formability. A method to assess the probability of failure of the process based on reliability theory and the forming limit diagram is proposed in this paper. The tube hydroforming process is affected by many parameters such as geometry, material properties, and process conditions. Finite element simulation was used to predict the relationship between the strain and these parameters, and a numerical method was applied to get the statistical distribution of the strain. Based on the forming limit band in the forming limit diagram, the reliability of the forming process can be evaluated. A tube hydroforming process of free bulging is then introduced as an example to illustrate the approach. The results show this reliability evaluation technique to be an innovative approach for product designers and process engineers to avoid failure during tube hydroforming.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1010
Author(s):  
Przemysław Snopiński ◽  
Tibor Donič ◽  
Tomasz Tański ◽  
Krzysztof Matus ◽  
Branislav Hadzima ◽  
...  

To date, numerous investigations have shown the beneficial effect of ultrasonic vibration-assisted forming technology due to its influence on the forming load, flow stress, friction condition reduction and the increase of the metal forming limit. Although the immediate occurring force and mean stress reduction are known phenomena, the underlying effects of ultrasonic-based material softening remain an object of current research. Therefore, in this article, we investigate the effect of upsetting with and without the ultrasonic vibrations (USV) on the evolution of the microstructure, stress relaxation and hardness of the AlMg3 aluminum alloy. To understand the process physics, after the UAC (ultrasonic assisted compression), the microstructures of the samples were analyzed by light and electron microscopy, including the orientation imaging via electron backscatter diffraction. According to the test result, it is found that ultrasonic vibration can reduce flow stress during the ultrasonic-assisted compression (UAC) process for the investigated aluminum–magnesium alloy due to the acoustic softening effect. By comparing the microstructures of samples compressed with and without simultaneous application of ultrasonic vibrations, the enhanced shear banding and grain rotation were found to be responsible for grain refinement enhancement. The coupled action of the ultrasonic vibrations and plastic deformation decreased the grains of AlMg3 alloy from ~270 μm to ~1.52 μm, which has resulted in a hardness enhancement of UAC processed sample to about 117 HV.


Sign in / Sign up

Export Citation Format

Share Document