Variational principle of partial-interaction composite beams using Timoshenko's beam theory

2012 ◽  
Vol 60 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Rongqiao Xu ◽  
Guannan Wang
2016 ◽  
Vol 22 (10) ◽  
pp. 2011-2039 ◽  
Author(s):  
Gerard Taig ◽  
Gianluca Ranzi

This paper presents a Generalised Beam Theory formulation to study the partial interaction behaviour of two-layered prismatic steel–concrete composite beams. The novelty of the proposed approach is in its capacity to handle the deformability of the shear connections at the interface between the slab and steel beam in both the longitudinal and transverse directions in the evaluation of the deformation modes. This method falls within a category of cross-sectional analyses available in the literature for which a suitable set of deformation modes, including conventional, extension and shear, is determined from dynamic analyses of discrete planar frame models representing the cross-section. In this context, the shear connections are modelled using shear deformable spring elements. As a result, the in-plane partial shear interaction behaviour is accounted for in the planar dynamic analysis during the evaluation of the conventional and extension modes, while the longitudinal partial interaction behaviour associated with the shear modes is included in the out-of-plane dynamic analyses. In the case of the conventional modes, the longitudinal slip is accounted for in the post-processing stage where the warping displacements are determined. A numerical example of a composite box girder beam is presented and its structural response investigated for different levels of shear connection stiffness in both the longitudinal and transverse directions. The accuracy of the numerical results is validated against those obtained with a shell finite element model implemented in ABAQUS/Standard software.


2020 ◽  
Vol 8 (5) ◽  
pp. 3559-3565

In this Paper, the analysis of simply supported laminated composite beam having uniformly distributed load is performed. The solutions obtained in the form of the displacements and stresses for different layered cross ply laminated composite simply supported beams subjected uniformly distributed to load. Different aspect ratio consider for different results in terms of displacement, bending stress and shear stresses. The shear stresses are calculated with the help of equilibrium equation and constitutive relationship. Using displacement field including trigonometric function of laminated composite beams are derived from virtual displacement principle. There are axial displacement, transverse displacement, bending stress and shear stresses. In addition, Euler-Bernoulli (ETB), First order shear deformation beam theory (FSDT), Higher order shear deformation beam theory (HSDT) and Hyperbolic shear deformation beam theory (HYSDT) solution have been made for comparison and better accuracy of solutions and results of static analyses of laminated composite beams for simply supported laminated composite beam.


2020 ◽  
Vol 20 (13) ◽  
pp. 2041007
Author(s):  
Rodrigo Gonçalves ◽  
Dinar Camotim ◽  
David Henriques

This paper reports the most recent developments concerning Generalized Beam Theory (GBT) formulations, and corresponding finite element implementations, for steel-concrete composite beams. These formulations are able to perform the following types of analysis: (i) materially nonlinear analysis, to calculate the beam load-displacement response, up to collapse, including steel plasticity, concrete cracking/crushing and shear lag effects, (ii) bifurcation (linear stability) analysis, to obtain local/distortional bifurcation loads and buckling mode shapes of beams subjected to negative (hogging) bending, accounting for shear lag and concrete cracking effects and (iii) long-term service analysis including creep, cracking and arbitrary cross-section deformation (which includes shear lag) effects. The potential (computational efficiency and accuracy) of the proposed GBT-based finite elements is illustrated through several numerical examples. For comparison purposes, results obtained with standard finite strip and shell/brick finite element models are provided.


Sign in / Sign up

Export Citation Format

Share Document