Numerical prediction of springback and ductile damage in rubber-pad forming process of aluminum sheet metal

2016 ◽  
Vol 117 ◽  
pp. 218-226 ◽  
Author(s):  
L. Belhassen ◽  
S. Koubaa ◽  
M. Wali ◽  
F. Dammak
Author(s):  
Teng Fei ◽  
Wang Hongyu ◽  
Wang Guodong ◽  
Jiang Lei ◽  
Sun Juncai ◽  
...  

Rubber pad forming is one of advance processing technologies. With both rubber pad and die, the sheet metal is stamped into the required shapes. The shapes of the die directly affect the final shapes of the channels on the sheet. With the developments of micro-channels, a new kind of two-step channels is concerned gradually in many fields. Since there are waved structures in these channels, many beneficial functions are caused. However, the manufacturing of this new kind channels by rubber pad forming are still not meticulously researched. This article is focused on the rubber pad forming process of different two-step channels. Different two-step channels are designed and made. Based on both FEM and physical experiments, the forming processes of these new channels are researched. The forming results are discussed and compared with each other, the best design strategy is also proposed through results.


Author(s):  
Peter Frohn-Sörensen ◽  
Michael Geueke ◽  
Tadele Belay Tuli ◽  
Christopher Kuhnhen ◽  
Martin Manns ◽  
...  

AbstractDue to the change from mass production to mass personalized production and the resulting intrinsic product flexibility, the automotive industry, among others, is looking for cost-efficient and resource-saving production methods to combining global just-in-time production. In addition to geometric manufacturing flexibility, additive manufacturing offers a resource-saving application for rapid prototyping and small series in predevelopment. In this study, the FDM process is utilized to manufacture the tooling to draw a small series of sheet metal parts in combination with the rubber pad forming process. Therefore, a variety of common AM polymer materials (PETG, PLA, and ABS) is compared in compression tests, from which PLA is selected to be applied as sheet metal forming die. For the rubber pad forming process, relevant processing parameters, i.e., press force and rubber cushion hardness, are studied with respect to forming depth. The product batch is examined by optical evaluation using a metrological system. The scans of the tool and sheet metal parts confirm the mechanical integrity of the additively manufactured die from polymer and thus the suitability of this approach for small series in sheet metal drawing processes, e.g., for automotive applications.


2011 ◽  
Vol 473 ◽  
pp. 637-644 ◽  
Author(s):  
Antonio del Prete ◽  
Gabriele Papadia ◽  
Barbara Manisi

Rubber pad forming (RPF) is a novel method for sheet metal forming that has been increasingly used for: automotive, energy, electronic and aeronautic applications [1]. Compared with the conventional forming processes, this method only requires one rigid die, according to the shape of the part, and the other tool is replaced by a rubber pad [1]. This method can greatly improve the formability of the blank because the contact surface between the rigid die and the rubber pad is flexible. By this way the rubber pad forming enables the production of sheet metal parts with complex contours and bends. Furthermore, the rubber pad forming process is characterized by a low cost of the die because only one rigid die is required [2]. The conventional way to develop rubber pad forming processes of metallic components requires a burdensome trial-and-error process for setting-up the technology, whose success chiefly depends on operator’s skill and experience [4][5]. In the aeronautical field, where the parts are produced in small series, a too lengthy and costly development phase cannot be accepted. Moreover, the small number of components does not justify large investments in tooling. For these reasons, it is necessary that, during the conceptual design, possible technological troubles are preliminarily faced by means of numerical simulation [4],[6]. In this study, the rubber forming process of an aluminum alloy aeronautic component has been explored with numerical simulations and the significant parameters associated with this process have been investigated. Several effects, depending on: stamping strategy, component geometry and rubber pad characterization have been taken into account. The process analysis has been carried out thanks to an extensive use of a commercially finite element (FE) package useful for an appropriate set-up of the process model [7],[8]. These investigations have shown the effectiveness of simulations in process design and highlighted the critical parameters which require necessary adjustments before physical tests.


2020 ◽  
Author(s):  
Peter Frohn-Sörensen ◽  
Michael Geueke ◽  
Tadele Belay Tuli ◽  
Christopher Kuhnhen ◽  
Martin Manns ◽  
...  

Due to the change from mass production to mass personalized production and the resulting intrinsic product flexibility, the automotive industry, among others, is looking for cost-efficient and resource-saving production methods to combining global just-in-time production. In addition to geometric manufacturing flexibility, additive manufacturing offers a resource-saving application for rapid prototyping and small series in pre-development. In this study, the FDM process was utilized to manufacture the tooling to draw a small series of sheet metal parts in combination with the rubber pad forming process. Therefore, a variety of common AM polymer materials (PETG, PLA and ABS) is compared in compression tests, from which PLA is selected to be applied as sheet metal forming die. For the rubber pad forming process, relevant processing parameters, i.e. press force and rubber cushion hardness, are studied with respect to forming depth. The product batch was examined by an optical evaluation using a metrological system. The scans of the tool and sheet metal parts confirm the mechanical integrity of the additively manufactured die from polymer and thus the suitability of this approach for small series in sheet metal drawing processes, e.g. for automotive applications.


2005 ◽  
Vol 128 (3) ◽  
pp. 622-633 ◽  
Author(s):  
Hong Seok Kim ◽  
Muammer Koc ◽  
Jun Ni

In warm forming of aluminum sheet materials, determination, realization, and maintenance of optimal temperature gradient is a key process parameter for increased formability. In this study, a two-phase procedure for efficient and accurate determination of proper temperature condition for warm forming of aluminum sheet metal blanks is presented using a hybrid 3D isothermal/non-isothermal finite element analysis (FEA) and design of experiments (DOE) approach. First, the relative trend, priority and overall temperature ranges of aluminum sheet metal blank regions are obtained using isothermal FE modeling and DOE techniques to reduce the analysis time significantly. In this phase, different temperature levels were assigned onto different regions of the deforming blank material (i.e., holding region, corner region, etc.). Heat transfer with the tooling and environment during the deformation process is ignored in order to achieve rapid predictions. Second, few additional non-isothermal FEAs, taking heat transfer into account, are conducted to validate and to refine the warm forming conditions based on the results from the isothermal FEA/DOE analysis. The proposed hybrid methodology offers rapid and relatively accurate design of warm forming process, especially for large parts that require 3D FE analysis. In addition, effects of forming speed (v), friction (μ), and blank holder pressure on formability are investigated. Increasing part formability is observed with decreasing punch speed and blank holder pressure while an optimal process window is found in case of varying friction coefficients.


Author(s):  
Ahmed Rafasnjani ◽  
Saeed Abbasion ◽  
Anoushiravan Farshidianfar ◽  
Nilgoon Irani

In this paper a methodology is proposed to predict ductile damage in metal forming process by using a coupled thermomechanical finite element method. The simulation contains the influence of thermal effects on material properties. The interaction between the damage evolution and the temperature distribution caused by heat generation due large strains has been correctly described by the proposed model. The results obtained with simulation of sheet metal blanking process show the importance of the strong coupling between thermal effects, plasticity, and ductile damage effect at large plastic strain with contact/friction. This model can be used for the prediction of the temperature field in some dynamic metal forming or machining processes.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 685
Author(s):  
Manuel Prado-Velasco ◽  
Rafael Ortiz-Marín

The emergence of computer-aided design (CAD) has propelled the evolution of the sheet metal engineering field. Sheet metal design software tools include parameters associated to the part’s forming process during the pattern drawing calculation. Current methods avoid the calculation of a first pattern drawing of the flattened part’s neutral surface, independent of the forming process, leading to several methodological limitations. The study evaluates the reliability of the Computer Extended Descriptive Geometry (CeDG) approach to surpass those limitations. Three study cases that cover a significative range of sheet metal systems are defined and the associated solid models and patterns’ drawings are computed through Geogebra-based CeDG and two selected CAD tools (Solid Edge 2020, LogiTRACE v14), with the aim of comparing their reliability and accuracy. Our results pointed to several methodological lacks in LogiTRACE and Solid Edge that prevented to solve properly several study cases. In opposition, the novel CeDG approach for the computer parametric modeling of 3D geometric systems overcame those limitations so that all models could be built and flattened with accuracy and without methodological limitations. As additional conclusion, the success of CeDG suggests the necessity to recover the relevance of descriptive geometry as a key core in graphic engineering.


Sign in / Sign up

Export Citation Format

Share Document