Rotordynamic characterization of rotating labyrinth gas turbine seals with radial growth: Combined centrifugal and thermal effects

2017 ◽  
Vol 123 ◽  
pp. 1-19 ◽  
Author(s):  
Sivakumar Subramanian ◽  
A.S. Sekhar ◽  
B.V.S.S.S. Prasad
Author(s):  
Angelo Cervone ◽  
Cristina Bramanti ◽  
Emilio Rapposelli ◽  
Luca d’Agostino

The aim of the present paper is to provide some highlights about the most interesting experimental activities carried out during the years 2000–2004 through the CPRTF (Cavitating Pump Rotordynamic Test Facility) at Centrospazio/Alta S.p.A. After a brief description of the facility, the experimental activities carried out on a NACA 0015 hydrofoil for the characterization of the pressure coefficient on the suction side and evaluation the cavity length and oscillations are presented. Then, the results obtained to characterize the performance and the cavitation instabilities on three different axial inducers are showed: in particular, a commercial three-bladed inducer, the four-bladed inducer installed in the LOX turbopump of the Ariane Vulcain MK1 rocket engine and the “FAST2”, a two-bladed one manufactured by Avio S.p.A. using the criteria followed for the VINCI180 LOX inducer. The most interesting results are related to the effects of the temperature on the cavitation instabilities on hydrofoils and inducers. Experiments showed that some instabilities, like the cloud cavitation on hydrofoils and the surge on inducers, are strongly affected by the temperature, while others seem not to be influenced by the thermal effects. In the final part of this paper, some indications of the main experimental activities scheduled for the next future are provided.


1987 ◽  
Vol 109 (3) ◽  
pp. 325-330 ◽  
Author(s):  
C. L. Spiro ◽  
S. G. Kimura ◽  
C. C. Chen

Chemical and physical transformations of coal ash during combustion and deposition in gas turbine environments have been studied. Extensive characterization of the coal-water mixture fuel and deposits obtained on deposition pins and turbine nozzle vanes has been performed. The behavior of alkali metals has been found to be much different from that for petroleum fuels, resulting in lower than expected deposition and probable reduced corrosion rates.


2017 ◽  
Vol 32 (9) ◽  
pp. 1730-1738 ◽  
Author(s):  
W. J. Nowak
Keyword(s):  

The significance of the GD-OES technique in the analysis of oxidized Ni-based superalloys and gas turbine components after the service is described in the present work.


Author(s):  
D. Biswas ◽  
K. Kawano ◽  
H. Iwasaki ◽  
M. Ishizuka ◽  
S. Yamanaka

The main aim or the present work is to explore computational fluid dynamics and related turbulence and combustion models for application to the design, understanding and development of gas turbine combustor. Validation studies were conducted using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) scheme to solve the relevant steady, elliptical partial differential equations of the conservation of mass, momentum, energy and chemical species in three-dimensional cylindrical co-ordinate system to simulate the gas turbine combustion chamber configurations. A modified version of k-ε turbulence model was used for characterization of local turbulence in gas turbine combustor. Since, in the present study both diffusion and pre-mixed combustion were considered, in addition to familiar bi-molecular Arhenius relation, influence of turbulence on reaction rates was accounted for based on the eddy break up concept of Spalding and was assumed that the local reaction rate was proportional to the rate of dissipation of turbulent eddies. Firstly, the validity of the present approach with the turbulence and reaction models considered is checked by comparing the computed results with the standard experimental data on recirculation zone, mean axial velocity and temperature profiles, etc. for confined, reacting and non-reacting flows with reasonably well defined boundary conditions. Finally, the results of computation for practical gas turbine combustor using combined diffusion and pre-mixed combustion for different combustion conditions are discussed.


Sign in / Sign up

Export Citation Format

Share Document