Dynamic Drill-string Modeling for Acoustic Telemetry

Author(s):  
Hamid Mostaghimi ◽  
Jediael R. Pagtalunan ◽  
Bryan Moon ◽  
Seonghwan Kim ◽  
Simon S. Park
2021 ◽  
Vol 8 (11) ◽  
pp. 96-103
Author(s):  
Ali H. Alenezi ◽  

The acoustic telemetry used the drill string as a communication channel, which allows data transfer without interrupting drilling operations. This technology suffers from stop-bands that reduce the feasible bands for transmission up to 60 percent. The stop bands come due to the structure of the drill string constructed from pipes and tool joints. In this paper, we optimized the design of the drill string main components, which are pipes and tool-joints lengths, with an aim to increase the pass-bands total bandwidth. Using the verified drill string channel model, we proved that, with optimal lengths of pipes and tool joints, we can make the whole drill string channel bandwidth available for transmission. We also investigated the effect of small deviation from the optimal lengths on the channel transmission bands. The results showed that an increase of more than 138 percent in the available transmission bandwidths compared with standard drill string dimensions.


1979 ◽  
Author(s):  
William D. Squire ◽  
H.J. Whitehouse

2020 ◽  
Vol 639 ◽  
pp. 169-183
Author(s):  
P Matich ◽  
BA Strickland ◽  
MR Heithaus

Chronic environmental change threatens biodiversity, but acute disturbance events present more rapid and immediate threats. In 2010, a cold snap across south Florida had wide-ranging impacts, including negative effects on recreational fisheries, agriculture, and ecological communities. Here, we use acoustic telemetry and historical longline monitoring to assess the long-term implications of this event on juvenile bull sharks Carcharhinus leucas in the Florida Everglades. Despite the loss of virtually all individuals (ca. 90%) within the Shark River Estuary during the cold snap, the catch per unit effort (CPUE) of age 0 sharks on longlines recovered through recruitment within 6-8 mo of the event. Acoustic telemetry revealed that habitat use patterns of age 0-2 sharks reached an equilibrium in 4-6 yr. In contrast, the CPUE and habitat use of age 3 sharks required 5-7 yr to resemble pre-cold snap patterns. Environmental conditions and predation risk returned to previous levels within 1 yr of the cold snap, but abundances of some prey species remained depressed for several years. Reduced prey availability may have altered the profitability of some microhabitats after the cold snap, leading to more rapid ontogenetic shifts to marine waters among sharks for several years. Accelerated ontogenetic shifts coupled with inter-individual behavioral variability of bull sharks likely led to a slower recovery rate than predicted based on overall shark CPUE. While intrinsic variation driven by stochasticity in dynamic ecosystems may increase the resistance of species to chronic and acute disturbance, it may also increase recovery time in filling the diversity of niches occupied prior to disturbance if resistive capacity is exceeded.


Author(s):  
G.V. Buslaev ◽  
◽  
V.A. Ovchinnikov ◽  
N.A. Rudnitsky ◽  
◽  
...  
Keyword(s):  

2006 ◽  
Vol 4 ◽  
pp. 68-72
Author(s):  
A.G. Khakimov ◽  
Z.Z Sharafutdinov

The paper gives a methodology for calculating the drill string performance under off-design conditions, including the passage through the interface separating rocks with very different physico-mechanical characteristics, drilling of boulder rocks, and dynamic modes of operation. One of the mechanisms of the destruction of drill string elements and roller cutters is revealed.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Yi Zhou ◽  
Lin Yang ◽  
Changyue Fan ◽  
...  

Abstract Aiming at the current development of drilling technology and the deepening of oil and gas exploration, we focus on better studying the nonlinear dynamic characteristics of the drill string under complex working conditions and knowing the real movement of the drill string during drilling. This paper firstly combines the actual situation of the well to establish the dynamic model of the horizontal drill string, and analyzes the dynamic characteristics, giving the expression of the force of each part of the model. Secondly, it introduces the piecewise constant method (simply known as PT method), and gives the solution equation. Then according to the basic parameters, the axial vibration displacement and vibration velocity at the test points are solved by the PT method and the Runge–Kutta method, respectively, and the phase diagram, the Poincare map, and the spectrogram are obtained. The results obtained by the two methods are compared and analyzed. Finally, the relevant experimental tests are carried out. It shows that the results of the dynamic model of the horizontal drill string are basically consistent with the results obtained by the actual test, which verifies the validity of the dynamic model and the correctness of the calculated results. When solving the drill string nonlinear dynamics, the results of the PT method is closer to the theoretical solution than that of the Runge–Kutta method with the same order and time step. And the PT method is better than the Runge–Kutta method with the same order in smoothness and continuity in solving the drill string nonlinear dynamics.


Sign in / Sign up

Export Citation Format

Share Document