Essential role of the ESX-3 associated eccD3 locus in maintaining the cell wall integrity of Mycobacterium smegmatis

2018 ◽  
Vol 308 (7) ◽  
pp. 784-795 ◽  
Author(s):  
Yutika Nath ◽  
Suvendra Kumar Ray ◽  
Alak Kumar Buragohain
mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yanina S. Rizzi ◽  
Petra Happel ◽  
Sandra Lenz ◽  
Mounashree J. Urs ◽  
Martin Bonin ◽  
...  

ABSTRACT The biotrophic fungus Ustilago maydis harbors a chitin deacetylase (CDA) family of six active genes as well as one pseudogene which are differentially expressed during colonization. This includes one secreted soluble CDA (Cda4) and five putatively glycosylphosphatidylinositol (GPI)-anchored CDAs, of which Cda7 belongs to a new class of fungal CDAs. Here, we provide a comprehensive functional study of the entire family. While budding cells of U. maydis showed a discrete pattern of chitosan staining, biotrophic hyphae appeared surrounded by a chitosan layer. We purified all six active CDAs and show their activity on different chitin substrates. Single as well as multiple cda mutants were generated and revealed a virulence defect for mutants lacking cda7. We implicated cda4 in production of the chitosan layer surrounding biotrophic hyphae and demonstrated that the loss of this layer does not reduce virulence. By combining different cda mutations, we detected redundancy as well as specific functions for certain CDAs. Specifically, certain combinations of mutations significantly affected virulence concomitantly with reduced adherence, appressorium formation, penetration, and activation of plant defenses. Attempts to inactivate all seven cda genes simultaneously were unsuccessful, and induced depletion of cda2 in a background lacking the other six cda genes illustrated an essential role of chitosan for cell wall integrity. IMPORTANCE The basidiomycete Ustilago maydis causes smut disease in maize, causing substantial losses in world corn production. This nonobligate pathogen penetrates the plant cell wall with the help of appressoria and then establishes an extensive biotrophic interaction, where the hyphae are tightly encased by the plant plasma membrane. For successful invasion and development in plant tissue, recognition of conserved fungal cell wall components such as chitin by the plant immune system needs to be avoided or suppressed. One strategy to achieve this lies in the modification of chitin to chitosan by chitin deacetylases (CDAs). U. maydis has seven cda genes. This study reveals discrete as well as redundant contributions of these genes to virulence as well as to cell wall integrity. Unexpectedly, the inactivation of all seven genes is not tolerated, revealing an essential role of chitosan for viability.


2019 ◽  
Vol 52 ◽  
pp. 131-139 ◽  
Author(s):  
Hannes Vogler ◽  
Gorka Santos-Fernandez ◽  
Martin A Mecchia ◽  
Ueli Grossniklaus

2012 ◽  
Vol 7 (2) ◽  
pp. 298-299 ◽  
Author(s):  
Rebecca Reboul ◽  
Raimund Tenhaken

2021 ◽  
Vol 12 ◽  
Author(s):  
Mina Yu ◽  
Junjie Yu ◽  
Huijuan Cao ◽  
Tianqiao Song ◽  
Xiayan Pan ◽  
...  

Ustilaginoidea virens, the causal agent of rice false smut disease, is an important plant pathogen that causes severe quantitative and qualitative losses in rice worldwide. UvSUN1 is the only member of Group-I SUN family proteins in U. virens. In this work, the role of UvSUN1 in different aspects of the U. virens biology was studied by phenotypic analysis of Uvsun1 knockout strains. We identified that UvSUN1 was expressed during both conidial germination and the infection of rice. Disruption of the Uvsun1 gene affected the hyphal growth, conidiation, morphology of hyphae and conidia, adhesion and virulence. We also found that UvSUN1 is involved in the production of toxic compounds, which are able to inhibit elongation of the germinated seeds. Moreover, RNA-seq data showed that knockout of Uvsun1 resulted in misregulation of a subset of genes involved in signal recognition and transduction system, glycometabolism, cell wall integrity, and secondary metabolism. Collectively, this study reveals that Uvsun1 is required for growth, cell wall integrity and pathogenicity of U. virens, thereby providing new insights into the function of SUN family proteins in the growth and pathogenesis of this pathogen.


2014 ◽  
pp. 151-172 ◽  
Author(s):  
Marcos Henrique Luciano Silveira ◽  
Matti Siika-aho ◽  
Kristiina Kruus ◽  
Leyanis Mesa Garriga ◽  
Luiz Pereira Ramos

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Tessa Keenan ◽  
Adam Dowle ◽  
Rachel Bates ◽  
Margaret C. M. Smith

ABSTRACTThe physiological role of protein O-glycosylation in prokaryotes is poorly understood due to our limited knowledge of the extent of their glycoproteomes. InActinobacteria, defects in protein O-mannosyl transferase (Pmt)-mediated protein O-glycosylation have been shown to significantly retard growth (Mycobacterium tuberculosisandCorynebacterium glutamicum) or result in increased sensitivities to cell wall-targeting antibiotics (Streptomyces coelicolor), suggesting that protein O-glycosylation has an important role in cell physiology. Only a single glycoprotein (SCO4142, or PstS) has been identified to date inS. coelicolor. Combining biochemical and mass spectrometry-based approaches, we have isolated and characterized the membrane glycoproteome inS. coelicolor. A total of ninety-five high-confidence glycopeptides were identified which mapped to thirty-seven newS. coelicolorglycoproteins and a deeper understanding of glycosylation sites in PstS. Glycosylation sites were found to be modified with up to three hexose residues, consistent with what has been observed previously in otherActinobacteria.S. coelicolorglycoproteins have diverse roles and functions, including solute binding, polysaccharide hydrolases, ABC transporters, and cell wall biosynthesis, the latter being of potential relevance to the antibiotic-sensitive phenotype ofpmtmutants. Null mutants in genes encoding a putatived-Ala-d-Ala carboxypeptidase (SCO4847) and anl,d-transpeptidase (SCO4934) were hypersensitive to cell wall-targeting antibiotics. Additionally, thesco4847mutants displayed an increased susceptibility to lysozyme treatment. These findings strongly suggest that both glycoproteins are required for maintaining cell wall integrity and that glycosylation could be affecting enzyme function.IMPORTANCEIn prokaryotes, the role of protein glycosylation is poorly understood due to our limited understanding of their glycoproteomes. In someActinobacteria, defects in protein O-glycosylation have been shown to retard growth and result in hypersensitivity to cell wall-targeting antibiotics, suggesting that this modification is important for maintaining cell wall structure. Here, we have characterized the glycoproteome inStreptomyces coelicolorand shown that glycoproteins have diverse roles, including those related to solute binding, ABC transporters, and cell wall biosynthesis. We have generated mutants encoding two putative cell wall-active glycoproteins and shown them to be hypersensitive to cell wall-targeting antibiotics. These findings strongly suggest that both glycoproteins are required for maintaining cell wall integrity and that glycosylation affects enzyme function.


Sign in / Sign up

Export Citation Format

Share Document