A fractal approach of the sound absorption behaviour of materials. Theoretical and experimental aspects

2018 ◽  
Vol 103 ◽  
pp. 128-137 ◽  
Author(s):  
Carmen Bujoreanu ◽  
Ştefan Irimiciuc ◽  
Marcelin Benchea ◽  
Florin Nedeff ◽  
Maricel Agop
2000 ◽  
Vol 39 (02) ◽  
pp. 37-42 ◽  
Author(s):  
P. Hartikainen ◽  
J. T. Kuikka

Summary Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and singlephoton emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (= coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17 ± 0.05 (mean ± SD) for the left hemisphere and 1.15 ± 0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04 ± 0.03 than in healthy controls. Conclusion: Within the limits of spatial resolution of SPECT, the heterogeneity of brain blood flow is well characterized by a fractal dimension. Fractal analysis may help brain scientists to assess age-, sex- and laterality-related anatomic and physiological changes of brain blood flow and possibly to improve precision of diagnostic information available for patient care.


2020 ◽  
Vol 52 (1) ◽  
pp. 28-43 ◽  
Author(s):  
Wei Xu ◽  
Xiaoyang Fang ◽  
Jiatong Han ◽  
Zhihui Wu ◽  
Jilei Zhang

2007 ◽  
Vol 30 (9-10) ◽  
pp. 1227-1249
Author(s):  
R. García‐Lopera ◽  
Juan E. Figueruelo ◽  
Iolanda Porcar ◽  
Agustín Campos ◽  
Concepción Abad
Keyword(s):  

2021 ◽  
Vol 13 (2) ◽  
pp. 637
Author(s):  
Tomas Astrauskas ◽  
Tomas Januševičius ◽  
Raimondas Grubliauskas

Studies on recycled materials emerged during recent years. This paper investigates samples’ sound absorption properties for panels fabricated of a mixture of paper sludge (PS) and clay mixture. PS was the core material. The sound absorption was measured. We also consider the influence of an air gap between panels and rigid backing. Different air gaps (50, 100, 150, 200 mm) simulate existing acoustic panel systems. Finally, the PS and clay composite panel sound absorption coefficients are compared to those for a typical commercial absorptive ceiling panel. The average sound absorption coefficient of PS-clay composite panels (αavg. in the frequency range from 250 to 1600 Hz) was up to 0.55. The resulting average sound absorption coefficient of panels made of recycled (but unfinished) materials is even somewhat higher than for the finished commercial (finished) acoustic panel (αavg. = 0.51).


2021 ◽  
pp. 1-10
Author(s):  
Ida Norfaslia Nasidi ◽  
Lokman Hakim Ismail ◽  
Emedya Samsudin ◽  
Muhammad Ismail Jaffar

Sign in / Sign up

Export Citation Format

Share Document