A new definition of fractional derivative

Author(s):  
Zhibao Zheng ◽  
Wei Zhao ◽  
Hongzhe Dai
2016 ◽  
Vol 14 (1) ◽  
pp. 1122-1124 ◽  
Author(s):  
Ricardo Almeida ◽  
Małgorzata Guzowska ◽  
Tatiana Odzijewicz

AbstractIn this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.


2021 ◽  
Vol 24 (4) ◽  
pp. 1003-1014
Author(s):  
J. A. Tenreiro Machado

Abstract This paper proposes a conceptual experiment embedding the model of a bouncing ball and the Grünwald-Letnikov (GL) formulation for derivative of fractional order. The impacts of the ball with the surface are modeled by means of a restitution coefficient related to the coefficients of the GL fractional derivative. The results are straightforward to interpret under the light of the classical physics. The mechanical experiment leads to a physical perspective and allows a straightforward visualization. This strategy provides not only a motivational introduction to students of the fractional calculus, but also triggers possible discussion with regard to the use of fractional models in mechanics.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 630
Author(s):  
Dandan Yang ◽  
Chuanzhi Bai

In this paper, we investigate the existence of solutions for a class of anti-periodic fractional differential inclusions with ψ -Riesz-Caputo fractional derivative. A new definition of ψ -Riesz-Caputo fractional derivative of order α is proposed. By means of Contractive map theorem and nonlinear alternative for Kakutani maps, sufficient conditions for the existence of solutions to the fractional differential inclusions are given. We present two examples to illustrate our main results.


2020 ◽  
Vol 6 (2) ◽  
pp. 210-217
Author(s):  
Radouane Azennar ◽  
Driss Mentagui

AbstractIn this paper, we prove that the intermediate value theorem remains true for the conformable fractional derivative and we prove some useful results using the definition of conformable fractional derivative given in R. Khalil, M. Al Horani, A. Yousef, M. Sababhehb [4].


Author(s):  
Ioannis Petromichelakis ◽  
Apostolos F. Psaros ◽  
Ioannis A. Kougioumtzoglou

Abstract A methodology based on the Wiener path integral technique (WPI) is developed for stochastic response determination and reliability-based design optimization of a class of nonlinear electromechanical energy harvesters endowed with fractional derivative elements. In this regard, first, the WPI technique is appropriately adapted and enhanced to account both for the singular diffusion matrix and for the fractional derivative modeling of the capacitance in the coupled electromechanical governing equations. Next, a reliability-based design optimization problem is formulated and solved, in conjunction with the WPI technique, for determining the optimal parameters of the harvester. It is noted that the herein proposed definition of the failure probability constraint is particularly suitable for harvester configurations subject to space limitations. Several numerical examples are included, while comparisons with pertinent Monte Carlo simulation data demonstrate the satisfactory performance of the methodology.


Author(s):  
Xiaorang Li ◽  
Christopher Essex ◽  
Matt Davison

A new definition of fractional order derivative is given and its basic properties are investigated. This definition is based on the Weyl derivative and is a local property of functions. It can be applied to non-differentiable functions and may be useful for studying fractal curves.


2007 ◽  
Vol 18 (03) ◽  
pp. 281-299 ◽  
Author(s):  
VASILY E. TARASOV

Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of selfadjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.


Sign in / Sign up

Export Citation Format

Share Document