scholarly journals A new Definition of Fractional Derivative and Fractional Integral

2018 ◽  
Vol 13 (1) ◽  
pp. 304-323
Author(s):  
Ahmed M. Kareem
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Atimad Harir ◽  
Said Melliani ◽  
Lalla Saadia Chadli

In this paper, the fuzzy fractional evolution equations of order q (FFEE) with fuzzy Caputo fractional derivative are introduced. We study the existence and uniqueness of mild solutions for FFEE under some conditions. Also, we generalize the definition of the fuzzy fractional integral and derivative order q. The fuzzy Laplace transform is presented and proved. The solvability of the problem (FFEE) and the properties of the fuzzy solution operator and its generator are investigated and developed.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Feng Gao ◽  
Chunmei Chi

In this paper, we made improvement on the conformable fractional derivative. Compared to the original one, the improved conformable fractional derivative can be a better replacement of the classical Riemann-Liouville and Caputo fractional derivative in terms of physical meaning. We also gave the definition of the corresponding fractional integral and illustrated the applications of the improved conformable derivative to fractional differential equations by some examples.


2018 ◽  
Vol 27 (2) ◽  
pp. 197-206
Author(s):  
ERHAN SET ◽  
◽  
AHMET OCAK AKDEMIR ◽  
I. MUMCU ◽  
◽  
...  

Recently the authors Abdeljawad [Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66] and Khalil et al. [Khalil, R., Horani, M. Al., Yousef, A. and Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70] introduced a new and simple well-behaved concept of fractional integral called conformable fractional integral. In this article, we establish Hermite-Hadamard’s inequalities for conformable fractional integral. We also give extensions of Hermite-Hadamard type inequalities for conformable fractional integrals.


2016 ◽  
Vol 14 (1) ◽  
pp. 1122-1124 ◽  
Author(s):  
Ricardo Almeida ◽  
Małgorzata Guzowska ◽  
Tatiana Odzijewicz

AbstractIn this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 47
Author(s):  
A. Torres-Hernandez ◽  
F. Brambila-Paz ◽  
U. Iturrarán-Viveros ◽  
R. Caballero-Cruz

In the following paper, we present a way to accelerate the speed of convergence of the fractional Newton–Raphson (F N–R) method, which seems to have an order of convergence at least linearly for the case in which the order α of the derivative is different from one. A simplified way of constructing the Riemann–Liouville (R–L) fractional operators, fractional integral and fractional derivative is presented along with examples of its application on different functions. Furthermore, an introduction to Aitken’s method is made and it is explained why it has the ability to accelerate the convergence of the iterative methods, in order to finally present the results that were obtained when implementing Aitken’s method in the F N–R method, where it is shown that F N–R with Aitken’s method converges faster than the simple F N–R.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Rashida Zafar ◽  
Mujeeb ur Rehman ◽  
Moniba Shams

Abstract In this paper a general framework is presented on some operational properties of Caputo modification of Hadamard-type fractional differential operator along with a new algorithm proposed for approximation of Hadamard-type fractional integral using Haar wavelet method. Moreover, a generalized Taylor expansion based on Caputo–Hadamard-type fractional differential operator is also established, and an example is presented for illustration.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 130
Author(s):  
Suphawat Asawasamrit ◽  
Yasintorn Thadang ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In the present article we study existence and uniqueness results for a new class of boundary value problems consisting by non-instantaneous impulses and Caputo fractional derivative of a function with respect to another function, supplemented with Riemann–Stieltjes fractional integral boundary conditions. The existence of a unique solution is obtained via Banach’s contraction mapping principle, while an existence result is established by using Leray–Schauder nonlinear alternative. Examples illustrating the main results are also constructed.


2021 ◽  
Vol 24 (4) ◽  
pp. 1003-1014
Author(s):  
J. A. Tenreiro Machado

Abstract This paper proposes a conceptual experiment embedding the model of a bouncing ball and the Grünwald-Letnikov (GL) formulation for derivative of fractional order. The impacts of the ball with the surface are modeled by means of a restitution coefficient related to the coefficients of the GL fractional derivative. The results are straightforward to interpret under the light of the classical physics. The mechanical experiment leads to a physical perspective and allows a straightforward visualization. This strategy provides not only a motivational introduction to students of the fractional calculus, but also triggers possible discussion with regard to the use of fractional models in mechanics.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 630
Author(s):  
Dandan Yang ◽  
Chuanzhi Bai

In this paper, we investigate the existence of solutions for a class of anti-periodic fractional differential inclusions with ψ -Riesz-Caputo fractional derivative. A new definition of ψ -Riesz-Caputo fractional derivative of order α is proposed. By means of Contractive map theorem and nonlinear alternative for Kakutani maps, sufficient conditions for the existence of solutions to the fractional differential inclusions are given. We present two examples to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document