scholarly journals The Ascaris suum nicotinic receptor, ACR-16, as a drug target: Four novel negative allosteric modulators from virtual screening

Author(s):  
Fudan Zheng ◽  
Alan P. Robertson ◽  
Melanie Abongwa ◽  
Edward W. Yu ◽  
Richard J. Martin
2019 ◽  
Vol 16 (4) ◽  
pp. 417-426
Author(s):  
Vimee Raturi ◽  
Kumar Abhishek ◽  
Subhashis Jana ◽  
Subhendu Sekhar Bag ◽  
Vishal Trivedi

Background: Malaria Parasite relies heavily on signal transduction pathways to control growth, the progression of the life cycle and sustaining stress for its survival. Unlike kinases, Plasmodium's phosphatome is one of the smallest and least explored for identifying drug target for clinical intervention. PF14_0660 is a putative protein present on the chromosome 14 of Plasmodium falciparum genome. Methods: Multiple sequence alignment of PF14_0660 with other known protein phosphatase indicate the presence of phosphatase motif with specific residues essential for metal binding, catalysis and providing structural stability. PF14_0660 is a mixed α/β type of protein with several β -sheet and α-helix arranged to form βαβαβα sub-structure. The surface properties of PF14_0660 is conserved with another phosphate of this family, but it profoundly diverges from the host protein tyrosine phosphatase. PF14_0660 was cloned, over-expressed and protein is exhibiting phosphatase activity in a dose-dependent manner. Docking of Heterocyclic compounds from chemical libraries into the PF14_0660 active site found nice fitting of several candidate molecules. Results: Compound PPinh6, PPinh 7 and PPinh 5 are exhibiting antimalarial activity with an IC50 of 1.4 ± 0.2µM, 3.8 ± 0.3 µM and 9.4 ± 0.6&#181M respectively. Compound PPinh 6 and PPinh 7 are inhibiting intracellular PF14_0660 phosphatase activity and killing parasite through the generation of reactive oxygen species. Conclusion: Hence, a combination of molecular modelling, virtual screening and biochemical study allowed us to explore the potentials of PF14_0660 as a drug target to design anti-malarials.


2011 ◽  
Vol 51 (12) ◽  
pp. 3105-3112 ◽  
Author(s):  
Lorenz C. Blum ◽  
Ruud van Deursen ◽  
Sonia Bertrand ◽  
Milena Mayer ◽  
Justus J. Bürgi ◽  
...  

2012 ◽  
Vol 52 (11) ◽  
pp. 3053-3063 ◽  
Author(s):  
Sabina Berne ◽  
Barbara Podobnik ◽  
Neja Zupanec ◽  
Metka Novak ◽  
Nada Kraševec ◽  
...  

Author(s):  
Fahad Hassan Shah ◽  
Song Ja Kim

Background: Fibroleukin-2 protein (FGL2) causes redevelopment of brain tumors. Inhibition of these proteins has shown to improve glioblastoma prognosis and treatment efficacy. Aim: The current study gathered recently exploited natural compounds that suppress glioblastoma proliferation in vitro, tested against FGL2 protein. Method: Twenty-five compounds were explored through a virtual screening platform. Results: Three natural compounds (betanine, hesperetin and ovatodiolide) hit the active site of FGL2. Furthermore, the influence of these compounds was also assessed using in silico gene expression, and ADMET tools showed downregulation of some genes, which caused rapid tumor development while possessing a moderate acute toxicity and pharmacokinetic profile. Conclusion: Our study presents three compounds that are good candidates for evaluation in FGL2 mutated glioblastoma animal models.


2019 ◽  
Vol 33 (9) ◽  
pp. 787-797 ◽  
Author(s):  
Zoltán Orgován ◽  
György G. Ferenczy ◽  
György M. Keserű

Abstract Stabilizing unique receptor conformations, allosteric modulators of G-protein coupled receptors (GPCRs) might open novel treatment options due to their new pharmacological action, their enhanced specificity and selectivity in both binding and signaling. Ligand binding occurs at intrahelical allosteric sites and involves significant induced fit effects that include conformational changes in the local protein environment and water networks. Based on the analysis of available crystal structures of metabotropic glutamate receptor 5 (mGlu5) we investigated these effects in the binding of mGlu5 receptor negative allosteric modulators. A large set of retrospective virtual screens revealed that the use of multiple protein structures and the inclusion of selected water molecules improves virtual screening performance compared to conventional docking strategies. The role of water molecules and protein flexibility in ligand binding can be taken into account efficiently by the proposed docking protocol that provided reasonable enrichment of true positives. This protocol is expected to be useful also for identifying intrahelical allosteric modulators for other GPCR targets.


Sign in / Sign up

Export Citation Format

Share Document