biochemical study
Recently Published Documents


TOTAL DOCUMENTS

1705
(FIVE YEARS 277)

H-INDEX

65
(FIVE YEARS 3)

2023 ◽  
Vol 83 ◽  
Author(s):  
M. U. Ijaz ◽  
S. A. Majeed ◽  
A. Asharaf ◽  
T. Ali ◽  
K. A. Al-Ghanim ◽  
...  

Abstract Thimerosal is an organomercurial compound, which is used in the preparation of intramuscular immunoglobulin, antivenoms, tattoo inks, skin test antigens, nasal products, ophthalmic drops, and vaccines as a preservative. In most of animal species and humans, the kidney is one of the main sites for mercurial compounds deposition and target organs for toxicity. So, the current research was intended to assess the thimerosal induced nephrotoxicity in male rats. Twenty-four adult male albino rats were categorized into four groups. The first group was a control group. Rats of Group-II, Group-III, and Group-IV were administered with 0.5µg/kg, 10µg/kg, and 50µg/kg of thimerosal once a day, respectively. Thimerosal administration significantly decreased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), glutathione (GSH), and protein content while increased the thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) levels dose-dependently. Blood urea nitrogen (BUN), creatinine, urobilinogen, urinary proteins, kidney injury molecule-1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels were substantially increased. In contrast, urinary albumin and creatinine clearance was reduced dose-dependently in thimerosal treated groups. The results demonstrated that thimerosal significantly increased the inflammation indicators including nuclear factor kappaB (NF-κB), tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), Interleukin-6 (IL-6) levels and cyclooxygenase-2 (COX-2) activities, DNA and histopathological damages dose-dependently. So, the present findings ascertained that thimerosal exerted nephrotoxicity in male albino rats.


2022 ◽  
Author(s):  
Roberto Vázquez ◽  
Mateo Seoane-Blanco ◽  
Virginia Rivero-Buceta ◽  
Susana Ruiz ◽  
Mark J. van Raaij ◽  
...  

Phage lysins are a source of novel antimicrobials to tackle the bacterial antibiotic resistance crisis. The engineering of phage lysins is being explored as a game-changing technological strategy for introducing a more precise approach in the way we apply antimicrobial therapy. Such engineering efforts will benefit from a better understanding of lysin structure and function. In this work, the antimicrobial activity of the endolysin from Pseudomonas aeruginosa phage JG004, termed Pae87, has been characterized. This lysin had been previously identified as an antimicrobial agent candidate, able to interact with the Gram-negative surface and disrupt it. Further evidence is hereby provided on this matter, based on a structural and biochemical study. A high-resolution crystal structure of Pae87 complexed with a peptidoglycan fragment showed a separate substrate-binding region within the catalytic domain, 18 Å away from the catalytic site and located at the opposite side of the lysin molecule. This substrate binding region was conserved among phylogenetically related lysins lacking an additional cell wall binding domain, but not among those containing such a module. Two glutamic acids were identified as relevant for the peptidoglycan degradation activity, although Pae87 antimicrobial activity was seemingly unrelated to it. In contrast, an antimicrobial peptide-like region within Pae87 C-terminus, named P87, was found to be able to actively disturb the outer membrane and have antibacterial activity by itself. Therefore, we propose an antimicrobial mechanism for Pae87 in which the P87 peptide plays the role of binding to the outer membrane and disrupting the cell wall function, either with or without the participation of Pae87 catalytic activity.


Cureus ◽  
2022 ◽  
Author(s):  
Khalid Alsaykhan ◽  
Nubesh S Khan ◽  
Mohammed I Aljumah ◽  
Abdulrahman S Albughaylil

Author(s):  
Lamia Benredjem ◽  
Hajira Berredjem ◽  
Akila Abdi ◽  
Maria Cristina Casero ◽  
Antonio Quesada ◽  
...  
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 78
Author(s):  
Nuno Maia ◽  
Maria João Nabais Sá ◽  
Cláudia Oliveira ◽  
Flávia Santos ◽  
Célia Azevedo Soares ◽  
...  

We describe an infant female with a syndromic neurodevelopmental clinical phenotype and increased chromosome instability as cellular phenotype. Genotype characterization revealed heterozygous variants in genes directly or indirectly linked to DNA repair: a de novo X-linked HDAC8 pathogenic variant, a paternally inherited FANCG pathogenic variant and a maternally inherited BRCA2 variant of uncertain significance. The full spectrum of the phenotype cannot be explained by any of the heterozygous variants on their own; thus, a synergic contribution is proposed. Complementation studies showed that the FANCG gene from the Fanconi Anaemia/BRCA (FA/BRCA) DNA repair pathway was impaired, indicating that the variant in FANCG contributes to the cellular phenotype. The patient’s chromosome instability represents the first report where heterozygous variant(s) in the FA/BRCA pathway are implicated in the cellular phenotype. We propose that a multigenic contribution of heterozygous variants in HDAC8 and the FA/BRCA pathway might have a role in the phenotype of this neurodevelopmental disorder. The importance of these findings may have repercussion in the clinical management of other cases with a similar synergic contribution of heterozygous variants, allowing the establishment of new genotype–phenotype correlations and motivating the biochemical study of the underlying mechanisms.


2021 ◽  
Author(s):  
A.P. Vlasov ◽  
S.S. Al-Kubaysi ◽  
F.A. Ali Fuad ◽  
S.T. Al-Anbari ◽  
B.A. Fedotov

In order to determine the role of ENOS (C774T) gene polymorphism in the progression of acute peritonitis and the formation of complications, a clinical and biochemical study of 40 patients with acute peritonitis was conducted. As a result of the study, it was proved that the early period of acute peritonitis is characterized by the development of endogenous intoxication, intensification of oxidative phenomena, hypercoagulation of the homeostasis system and inhibition of fibrinolysis, and in patients with acute peritonitis, carriers of the pathological TT genotype of the endothelial nitric oxide synthase gene, more pronounced deviations of homeostatic parameters are observed. Key words: acute peritonitis, genotype, DNA diagnostics, genetic testing of genotypes.


Sign in / Sign up

Export Citation Format

Share Document