Shear rheology and in-vitro release kinetic study of apigenin from lyotropic liquid crystal

2016 ◽  
Vol 497 (1-2) ◽  
pp. 248-254 ◽  
Author(s):  
Jun Fan ◽  
Feng Liu ◽  
Zhongni Wang
Author(s):  
Sushant Kumar ◽  
Satheesh Madhav N V ◽  
Anurag Verma ◽  
Kamla Pathak

The purpose of this research was to isolate the smart biopolymer from the fruit pulp of Fragaria × ananassa (garden strawberry). We isolated natural fruit pulp to evaluate the potentiality of biopolymer in delivery of nanosized lamotrigine as an antiepileptic drug. Lamotrigine was nanosized by screening its nano-size particle by UV method. The nanosized lamotrigine was used for preparation of bionanoparticles (LF1-LF8) by sonication method. The isolated biopolymer was characterized for DSC, FTIR, NMR, Mass and Zeta particle size analysis. The obtained results confirm its polymeric nature in different analysis. The prepared bionanoparticles showed the release of lamotrigine in sustained manner over 36 hours. The release kinetic study was done by using the BIT-SOFT 1.12 software and T50% and T80%, r2 were calculated. All the formulation showed more than 99.78% drug release. The In-vitro release study of different formulations showed the % drug release from 90.92% to 99.78%. The different formulations were evaluated for the In-vitro release study and release kinetic was studied. The formulation LF5 was found to be the best formulation having T50% of 17 hours and T80% of 29 hours with r2 value of 0.9925. The best formulation LF5 showed up to 90.925% drug release over 36 hours. According to the release kinetic study, the best-fit model was found to be Koresmayer-Peppas and the mechanism of drug release was found to be anomalous transport. The results obtained from different evaluations like percentage entrapment efficiency, particle size, release study, kinetic studies and stability study revealed that isolated biopolymer has good potentiality to form bionanoparticles and it can be safely used as an alternative to synthetic and semisynthetic polymers for the preparation of lamotrigine loaded stable bionanoparticles


2017 ◽  
Vol 18 (12) ◽  
pp. 2349-2360 ◽  
Author(s):  
Leila Moradkhannejhad ◽  
Majid Abdouss ◽  
Nasser Nikfarjam ◽  
Saeedeh Mazinani ◽  
Pantea Sayar

2018 ◽  
Vol 10 (6) ◽  
pp. 309
Author(s):  
Aya M. Dawaba ◽  
Hamdy M. Dawaba ◽  
Amal S. M. Abu El-enin ◽  
Maha K. A. Khalifa

Objective: The objective of this current study is to fabricate ocuserts to control the drug release from chosen bioadhesive polymeric matrixes to enhance patient compliance. Ciprofloxacin HCl (CFX HCl) was selected as a model drug.Methods: Different bioadhesive polymers with different film forming capabilities namely Hydroxy Propyl Methyl Cellulose (HPMC K4M), Poly Vinyl Alcohol (PVA), Sodium Carboxy Methyl Cellulose (Na CMC), Hydroxy Propyl Cellulose (HPC), Sodium Alginate (Na Alg.), pullulan and Xanthan Gum (XG) in different ratios were used in fabricating ocuserts using solvent-casting technique. Propylene Glycol (PG) was used as a plasticizer to facilitate the fabrication process. Characterization tests of the developed ocuserts were performed as well as bioadhesive tests and in vitro release studies of the incorporated drug. The obtained results were analysed using different release kinetic models. Stability of the selected ocuserts was investigated at 40±0.5 °C and 75±5% Relative Humidity (RH) for three months’ storage period. In vivo ocular irritation test was performed to investigate the safety of the formula in rabbits’ eyes as well as to test the release profile and thus to estimate In vitro In vivo correlation.Results: All the prepared ocuserts showed the uniformity of film characterization and bioadhesion strength ranged from 240±66 and 158±52dyne/cm2. Selected formula from the in vitro release study tested for in vivo study showed the slow release of ciprofloxacin drug up to 24 h with no signs of eye irritancy. Results for In vitro In vivo correlation showed an excellent correlation with R2 value of 0.9982.Conclusion: PVA based ocuserts proven to be a promising once-daily, effective and safe ocular delivery system of the drug.


1990 ◽  
Vol 79 (9) ◽  
pp. 763-767 ◽  
Author(s):  
Nazih Ammoury ◽  
Hatem Fessi ◽  
J.P. Devissaguet ◽  
F. Puisieux ◽  
S. Benita

Sign in / Sign up

Export Citation Format

Share Document