Framework using functional forms of hardening internal state variables in modeling elasto-plastic-damage behavior

2007 ◽  
Vol 23 (10-11) ◽  
pp. 1826-1859 ◽  
Author(s):  
George Z. Voyiadjis ◽  
Robert J. Dorgan
2000 ◽  
Vol 68 (2) ◽  
pp. 304-311 ◽  
Author(s):  
K. Abdel-Tawab ◽  
Y. J. Weitsman

A strain-based thermodynamics framework is proposed for modeling the continuum damage behavior of viscoelastic materials. Damage is represented by an internal state variable in the form of a symmetric second rank tensor. The effect of damage on the constitutive behavior is introduced through direct coupling between the damage variable and the viscoelastic internal state variables. This approach accounts for time-dependent damage as well as damage-induced changes in material symmetry. Also, damage evolution is modeled by employing the concept of damage surfaces. This work is motivated by experimental observations of the response of swirl-mat and random chopped fiber mat polymeric composites where viscoelastic creep was accompanied by a multitude of fiber/matrix interfacial cracks.


1990 ◽  
Vol 43 (7) ◽  
pp. 131-151 ◽  
Author(s):  
Sanda Cleja T¸igoiu ◽  
Eugen Soo´s

We present the microstructural basis, the initial macroscopical formulations, and a possible axiomatic reconstruction of the elastoviscoplastic model for metals based on the use of the local, current, relaxed configurations. Structural analysis and experimental data show that using these configurations offers advantages for the formulation of the material laws when the deformations are small or moderately large. Our review aims to be a concise, historical, and critical exposition of the main stages, contributions and results, which led, during the late sixties and the beginning of seventies, to the formulation of the fundamental ideas lying at the basis of the model. We delineate the role played by Lee, Liu, Teodosiu, Sidoroff, Mandel, and Kratochvil in the first formulation of the theory between 1966 and 1972, as well as the contributions of Dafalias and Loret to the development of the model between 1983 and 1985. Finally, we discuss some results obtained between 1985 and 1988 with models based on local current relaxed configurations.


1997 ◽  
Vol 32 (3) ◽  
pp. 175-181
Author(s):  
W Deng ◽  
A Asundi ◽  
C W Woo

Based on previous work by the authors, a model for anisotropic, kinematic hardening materials is constructed to describe constitutive equations and evolution laws in rate-independent, small deformation plasticity on the basis of thermodynamics. Unlike other theories developed earlier wherein only internal state variables are chosen to describe inelastic deformation, the present paper also considers inelastic strain as an independent variable. This can be shown to reduce to the well-known plastic strain in the case of rate-independent plasticity.


1973 ◽  
Vol 61 (1) ◽  
pp. 159-172 ◽  
Author(s):  
H. Buggisch

The steady two-dimensional problem of reflexion of an oblique partly dispersed plane shock wave from a plane wall is studied analytically. Viscosity, diffusion and heat conduction are neglected. The thermodynamic state of the gas is assumed to be determined by the instantaneous values of the specific entropy s, pressure p and a finite number of internal state variables. Results for the flow field behind the reflected shock are obtained by a perturbation method which is based on the assumption that the influence of relaxation is relatively weak.


Sign in / Sign up

Export Citation Format

Share Document