The effect of the irregular interface geometry in deformation and fracture of a steel substrate–boride coating composite

2009 ◽  
Vol 25 (11) ◽  
pp. 2025-2044 ◽  
Author(s):  
R.R. Balokhonov ◽  
V.A. Romanova
2019 ◽  
Vol 17 (2) ◽  
pp. 169 ◽  
Author(s):  
Ruslan Balokhonov ◽  
Varvara Romanova

The interfacial mechanisms of the stress-strain localization in non-homogeneous media are investigated, using a steel substrate - iron boride coating composition subjected to tension as an example. A dynamic boundary-value problem in a plane-strain formulation is solved numerically by the finite-difference method. The curvilinear substrate-coating interface geometry is assigned explicitly in calculations and is in agreement with experiment. Constitutive relations accounting for an elastic-plastic response of the isotropically-hardened substrate and for a brittle fracture of the coating are employed. Three stages of the plastic strain localization in the steel substrate are found to occur due to the irregular interface geometry. Distributions of the stress concentration regions in the coating are shown to be different at different stages. The stress concentration in the coating is demonstrated to increase nonlinearly during the third stage. The location of fracture is found to depend on the strength of the coating.


2021 ◽  
Vol 2 (1) ◽  
pp. 6-22
Author(s):  
Ruslan Balokhonov ◽  
◽  
Varvara Romanova ◽  
Aleksandr Zemlianov ◽  
◽  
...  

The numerical simulations of the deformation and fracture in an iron boride coating – steel substrate composition are presented. The dynamic boundary-value problem is solved numerically by the finite-difference method. A complex geometry of the borided coating – steel substrate interface is taken into account explicitly. To simulate the mechanical behavior of the steel substrate, use is made of an isotropic strain hardening model including a relation for shear band propagation. Local regions of bulk tension are shown to arise near the interface even under simple uniaxial compression of the composition and in so doing they determine the mesoscale mechanisms of fracture. The interrelation between plastic deformation in the steel substrate and cracking of the borided coating is studied. Stages of shear band front propagation attributable to the interface complex geometry have been revealed. The coating cracking pattern, location of the fracture onset regions and the total crack length are found to depend on the front velocity in the steel substrate.


2006 ◽  
Vol 200 (11) ◽  
pp. 3518-3526 ◽  
Author(s):  
L.W. Ma ◽  
J.M. Cairney ◽  
M.J. Hoffman ◽  
P.R. Munroe

Author(s):  
H. K. Birnbaum ◽  
I. M. Robertson

Studies of the effects of hydrogen environments on the deformation and fracture of fcc, bcc and hep metals and alloys have been carried out in a TEM environmental cell. The initial experiments were performed in the environmental cell of the HVEM facility at Argonne National Laboratory. More recently, a dedicated environmental cell facility has been constructed at the University of Illinois using a JEOL 4000EX and has been used for these studies. In the present paper we will describe the general design features of the JEOL environmental cell and some of the observations we have made on hydrogen effects on deformation and fracture.The JEOL environmental cell is designed to operate at 400 keV and below; in part because of the available accelerating voltage of the microscope and in part because the damage threshold of most materials is below 400 keV. The gas pressure at which chromatic aberration due to electron scattering from the gas molecules becomes excessive does not increase rapidly with with accelerating voltage making 400 keV a good choice from that point of view as well. A series of apertures were placed above and below the cell to control the pressures in various parts of the column.


Author(s):  
D.M. Jiang ◽  
B.D. Hong

Aluminum-lithium alloys have been recently got strong interests especially in the aircraft industry. Compared to conventional high strength aluminum alloys of the 2000 or 7000 series it is anticipated that these alloys offer a 10% increase in the stiffness and a 10% decrease in density, thus making them rather competitive to new up-coming non-metallic materials like carbon fiber reinforced composites.The object of the present paper is to evaluate the inluence of various microstructural features on the monotonic and cyclic deformation and fracture behaviors of Al-Li based alloy. The material used was 8090 alloy. After solution treated and waster quenched, the alloy was underaged (190°Clh), peak-aged (190°C24h) and overaged (150°C4h+230°C16h). The alloy in different aging condition was tensile and fatigue tested, the resultant fractures were observed in SEM. The deformation behavior was studied in TEM.


1988 ◽  
Vol 49 (C5) ◽  
pp. C5-677-C5-680
Author(s):  
I. M. ROBERTSON ◽  
G. M. BOND ◽  
T. C. LEE ◽  
D. S. SHIH ◽  
H. K. BIRNBAUM

2013 ◽  
Vol 133 (4) ◽  
pp. 126-127 ◽  
Author(s):  
Shota Hosokawa ◽  
Motoaki Hara ◽  
Hiroyuki Oguchi ◽  
Hiroki Kuwano

Sign in / Sign up

Export Citation Format

Share Document