lithium alloys
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 34)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Vol 2077 (1) ◽  
pp. 012011
Author(s):  
A G Malikov ◽  
A.I. Ancharov

Abstract A study of laser welding of modern aluminum-lithium alloys has been carried out. Optimization of post heat treatment of laser welded joints has been carried out. The change in the structural-phase composition of welded joints was investigated. The strength of welded joints after heat treatment was equal to the strength of the base alloy.


2021 ◽  
Vol 4 (5) ◽  
pp. 35-44
Author(s):  
R. El'cov

the main goal of this article is to obtain welded permanent joints of modern thermally hardened aluminum and aluminum-lithium alloys made by laser welding, having mechanical characteristics (temporary tensile resistance, yield strength, elongation at break) and structural-phase composition close to or equal to the base alloy. It is shown for the first time that by controlling the parameters of heat treatment of samples with a welded joint of all studied aluminum-lithium alloys, it is possible to purposefully influence the formation of the specified mechanical properties of the weld by changing the structural and phase composition of the weld. The evolution of the struc-tural and phase composition of welded joints of thermally hardened aluminum and aluminum-lithium alloys has been investigated using modern independent diagnostic methods: for the first time, the use of synchrotron radia-tion diffractometry in combination with high-resolution transmission, scanning electron and optical microscopy. The dependences of the increment of deformation under cyclic loading with amplitudes exceeding the elastic limit on temperature are established. For untreated welded joints, it was found that at +85 C, the inhomogeneity of the deformation increment increases, and its speed increases by 8 times for alloy 1461, 5 times for alloy 1420 and 1.5 times for alloy 1441. At a temperature of -60 0C, alloys 1420 and 1461 have hardening stages, during which the value of deformation decreases at given boundary stress values. At +20 0C, there is a uniform increment of defor-mation and an increase in the amplitude of deformation with an increase in the amplitude of stress. At +85 0C, the strain amplitude does not change with increasing stress amplitude, its value is 0.55-0.5 of the strain amplitude at +20 0C. Based on the research results, technological techniques have been developed that allow obtaining me-chanical characteristics and structural-phase compositions of welded joints close to the main alloy during laser welding of aviation thermally hardened aluminum and aluminum-lithium alloys of the Al-Mg-Cu. Al-Mg-Li, Al-Cu-Mg-Li, Al-Cu-Li systems.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1396
Author(s):  
Dan Song ◽  
Beibei Lian ◽  
Yulong Fu ◽  
Guowei Wang ◽  
Yanxin Qiao ◽  
...  

The formation of a corrosion-resistant coating by the hydrothermal method is an effective way to provide significant protection to magnesium alloys. However, it is a challenge to prepare such a coating on magnesium-lithium alloys because of its high chemical activity. Herein, the dual-layer structured corrosion-resistant conversion coating composed with Mg(OH)2 and LiOH was successfully synthesized on Mg-9Li alloy by the optimization of the hydrothermal reaction in deionized water. The coating synthesized at 140 °C for 2 h has the best anti-corrosion performance in all obtained coatings, which has a uniform and compact coating with thickness of about 3 μm. The improvement of the hydrophobicity due to the stacking structure of the surface layer, as well as the barrier effect of its inner compact coating on corrosive media, lead to the excellent anti-corrosion performance of the obtained hydrothermal conversion coating


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 693
Author(s):  
Wenhao Cheng ◽  
Hongbing Liu ◽  
Jie Tan ◽  
Zhishui Yu ◽  
Qingrong Shu

In this paper, the microstructure analysis and performance research of dual laser beam welded 2060-T8/2099-T83 aluminum–lithium alloys were carried out. First, the macroscopic morphology and microstructure characteristics of T-joint aluminum–lithium alloys under different welding conditions were observed. Then the effect of welding parameters and pore defects on tensile and fatigue properties of the weld were carried out and the experimental results were analyzed. It was found that the weld heat input has a significant influence on the penetration of the welded aluminum–lithium alloys joint. When the laser power is too high, the weld will absorb more laser energy and the increase in the evaporation of magnesium will further increase the weld penetration. When the penetration depth increases, the transverse tensile strength tends to decrease. There is no obvious rule for the effect of pore defects on the tensile strength of the weld. At the same time, the heat input of the weld is inversely proportional to the porosity. When the weld heat input increases from 19.41 to 23.33 kJ/m, the porosity decreases from 5.35% to 2.08%. During the fatigue test, it was confirmed that the existence of pore defects would reduce the fatigue life of the weld. In addition, from the analysis of the fatigue fracture morphology it can be found that when the porosity is low, the weld toe is the main source of fatigue cracks. The crack propagation zone shows a typical beach pattern and the final fracture of the base metal presents the characteristics of a brittle fracture. While, when the porosity is high, the crack source is mainly located at the pore defects. T-joint fractures from the inside of the weld and the fracture in the final fracture zone have obvious pore defects and dimples.


2021 ◽  
Vol 9 (6) ◽  
pp. 255-262
Author(s):  
Yue Yang ◽  
Xiang Chen ◽  
Jinfeng Nie ◽  
Kang Wei ◽  
Qingzhong Mao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document