Multiscale TRIP-based investigation of low-cycle fatigue of polycrystalline NiTi shape memory alloys

2019 ◽  
Vol 115 ◽  
pp. 307-329 ◽  
Author(s):  
Yahui Zhang ◽  
Ziad Moumni ◽  
Yajun You ◽  
Weihong Zhang ◽  
Jihong Zhu ◽  
...  
Author(s):  
Francis R. Phillips ◽  
Daniel Martin ◽  
Dimitris C. Lagoudas ◽  
Robert W. Wheeler

Shape memory alloys (SMAs) are unique materials capable of undergoing a thermo-mechanically induced, reversible, crystallographic phase transformation. As SMAs are utilized across a variety of applications, it is necessary to understand the internal changes that occur throughout the lifetime of SMA components. One of the key limitations to the lifetime of a SMA component is the response of SMAs to fatigue. SMAs are subject to two kinds of fatigue, namely structural fatigue due to cyclic mechanical loading which is similar to high cycle fatigue, and functional fatigue due to cyclic phase transformation which typical is limited to the low cycle fatigue regime. In cases where functional fatigue is due to thermally induced phase transformation in contrast to being mechanically induced, this form of fatigue can be further defined as actuation fatigue. Utilizing X-ray computed microtomography, it is shown that during actuation fatigue, internal damage such as cracks or voids, evolves in a non-linear manner. A function is generated to capture this non-linear internal damage evolution and introduced into a SMA constitutive model. Finally, it is shown how the modified SMA constitutive model responds and the ability of the model to predict actuation fatigue lifetime is demonstrated.


2020 ◽  
Vol 178 ◽  
pp. 442-446 ◽  
Author(s):  
Harshad M. Paranjape ◽  
Bill Ng ◽  
Ich Ong ◽  
Lot Vien ◽  
Christopher Huntley

1999 ◽  
pp. 337-344 ◽  
Author(s):  
A. Subramaniam ◽  
N. Rajapakse ◽  
D. Polyzois ◽  
B. Yue

2007 ◽  
Vol 465 (1-2) ◽  
pp. 44-48 ◽  
Author(s):  
Niraj Nayan ◽  
Govind ◽  
C.N. Saikrishna ◽  
K. Venkata Ramaiah ◽  
S.K. Bhaumik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document