Effect of laser energy density on the evolution of Ni4Ti3 precipitate and property of NiTi shape memory alloys prepared by selective laser melting

2021 ◽  
Vol 869 ◽  
pp. 159338
Author(s):  
Jie Gan ◽  
Longchen Duan ◽  
Fei Li ◽  
Yusi Che ◽  
Yan Zhou ◽  
...  
Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1683 ◽  
Author(s):  
Xiebin Wang ◽  
Sergey Kustov ◽  
Jan Van Humbeeck

Due to unique functional and mechanical properties, NiTi shape memory alloys are one of the most promising metallic functional materials. However, the poor workability limits the extensive utilization of NiTi alloys as components of complex shapes. The emerging additive manufacturing techniques provide high degrees of freedom to fabricate complex structures. A freeform fabrication of complex structures by additive manufacturing combined with the unique functional properties (e.g., shape memory effect and superelasticity) provide great potential for material and structure design, and thus should lead to numerous applications. In this review, the unique microstructure that is generated by selective laser melting (SLM) is discussed first. Afterwards, the previously reported transformation behavior and mechanical properties of NiTi alloys produced under various SLM conditions are summarized.


2018 ◽  
Vol 146 ◽  
pp. 246-250 ◽  
Author(s):  
Xiebin Wang ◽  
Mathew Speirs ◽  
Sergey Kustov ◽  
Bey Vrancken ◽  
Xiaopeng Li ◽  
...  

Author(s):  
Dongdong Gu ◽  
Fei Chang ◽  
Donghua Dai

The selective laser melting (SLM), due to its unique additive manufacturing (AM) processing manner and laser-induced nonequilibrium rapid melting/solidification mechanism, has a promising potential in developing new metallic materials with tailored performance. In this work, SLM of the SiC/AlSi10Mg composites was performed to prepare the Al-based composites with the multiple reinforcing phases. The influence of the SLM processing parameters on the constitutional phases, microstructural features, and mechanical performance (e.g., densification, microhardness, and wear property) of the SLM-processed Al-based composites was studied. The reinforcing phases in the SLM-processed Al-based composites included the unmelted micron-sized SiC particles, the in situ formed micron-sized Al4SiC4 strips, and the in situ produced submicron Al4SiC4 particles. As the input laser energy density increased, the extent of the in situ reaction between the SiC particles and the Al matrix increased, resulting in the larger degree of the formation of Al4SiC4 reinforcement. The densification rate of the SLM-processed Al-based composite parts increased as the applied laser energy density increased. The sufficiently high density (∼96% theoretical density (TD)) was achieved for the laser linear energy density larger than 1000 J/m. Due to the generation of the multiple reinforcing phases, the elevated mechanical properties were obtained for the SLM-processed Al-based composites, showing a high microhardness of 214 HV0.1, a considerably low coefficient of friction (COF) of 0.39, and a reduced wear rate of 1.56 × 10−5 mm3 N−1 m−1. At an excessive laser energy input, the grain size of the in situ formed Al4SiC4 reinforcing phase, both the strip- and particle-structured Al4SiC4, increased markedly. The significant grain coarsening and the formation of the interfacial microscopic shrinkage porosity lowered the mechanical properties of the SLM-processed Al-based composites. These findings in the present work are applicable and/or transferrable to other laser-based powder processing processes, e.g., laser cladding, laser metal deposition, or laser engineered net shaping.


Author(s):  
Weipeng Duan ◽  
Meiping Wu ◽  
Jitai Han ◽  
Yiqing Ma ◽  
Peipei Lu ◽  
...  

A systematical work was studied to illustrate the influence of defocusing distance on the forming quality of inner structure fabricated by selective laser melting for Ti-6Al-4V alloy. The relationship between defocusing distance and dimensional accuracy, surface roughness as well as flatness was investigated, finite element analysis (FEA) was used to show the temperature distribution. The results show that defocusing distance not only had an impact on laser energy density, but also showed a significant influence on the surface pressure of the metal powder. Smaller defocusing distance (0.0 mm) accompanied with higher molten pool maximum temperature (3262.96°C), powder melting and splashing at the same time. On the contrary, larger defocusing distance leading to unmelted powder and powder bonding, which influences the forming quality of samples. Dimensional accuracy was less affected in 0.0, 1.0, 2.0 mm defocusing distance (5%), but changed dramatically when it is 3.0 mm (22%). In the same condition, similar variation trend of surface roughness (Ra) and flatness was observed, and varying from 5.1 to 27.3 μm and 0.05 to 0.26 mm, respectively. Simultaneously, the bottom surface is less affected, while the other three sides have the opposite situation. Pores and unmelted powder can be seen on the surface, it is the comprehensive effect of laser energy density and surface pressure. It proves that it is feasible to manufacture inner structure by controlling this process parameter during SLM process, the influence mechanism of defocusing distance on forming quality was also illustrated in this work.


2016 ◽  
Vol 57 (11) ◽  
pp. 1952-1959 ◽  
Author(s):  
Joon-Phil Choi ◽  
Gi-Hun Shin ◽  
Mathieu Brochu ◽  
Yong-Jin Kim ◽  
Sang-Sun Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document