Identification of novel OTOF compound heterozygous mutations by targeted next-generation sequencing in a Chinese patient with auditory neuropathy spectrum disorder

2013 ◽  
Vol 77 (10) ◽  
pp. 1749-1752 ◽  
Author(s):  
Lu-ping Zhang ◽  
Yong-Chuan Chai ◽  
Tao Yang ◽  
Hao Wu
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Pengcheng Xu ◽  
Jun Xu ◽  
Hu Peng ◽  
Tao Yang

Genetic hearing loss is a common sensory disorder, and its cause is highly heterogeneous. In this study, by targeted next-generation sequencing of 414 known deafness genes, we identified compound heterozygous mutations p.R34X/p.M413T in TMC1 and p.S3417del/p.R1407T in MYO15A in two recessive Chinese Han deaf families. Intrafamilial cosegregation of the mutations with the hearing phenotype was confirmed in both families by the Sanger sequencing. Auditory features of the affected individuals are consistent with that previously reported for recessive mutations in TMC1 and MYO15A. The two novel mutations identified in this study, p.M413T in TMC1 and p.R1407T in MYO15A, are classified as likely pathogenic according to the guidelines of ACMG. Our study expanded the mutation spectrums of TMC1 and MYO15A and illustrated that genotype-phenotype correlation in combination with next-generation sequencing may improve the accuracy for genetic diagnosis of deafness.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Longhao Wang ◽  
Lin Zhao ◽  
Hu Peng ◽  
Jun Xu ◽  
Yun Lin ◽  
...  

Hearing loss is a highly heterogeneous disorder, with more than 60% of congenital cases caused by genetic factors. This study is aimed at identifying the genetic cause of congenital hearing loss in a Chinese Han family. Auditory evaluation before and after cochlear implantation and targeted next-generation sequencing of 140 deafness-related genes were performed for the deaf proband. Compound heterozygous mutations c.3658_3662del (p. E1221Wfs∗23) and c.6177+1G>T were identified in MYO15A as the only candidate pathogenic mutations cosegregated with the hearing loss in this family. These two variants were absent in 200 normal-hearing Chinese Hans and were classified as likely pathogenic and pathogenic, respectively, based on the ACMG guideline. Our study further expanded the mutation spectrum of MYO15A as the c.3658_3662del mutation is novel and confirmed that deaf patients with recessive MYO15A mutations have a good outcome for cochlear implantation.


2017 ◽  
Vol 27 (6) ◽  
pp. 791-796 ◽  
Author(s):  
Jianping Xiao ◽  
Xueqin Guo ◽  
Yong Wang ◽  
Mingkun Shao ◽  
Xiaoming Wei ◽  
...  

Purpose To identify disease-causing mutations in a Chinese patient with retinitis pigmentosa (RP). Methods A detailed clinical examination was performed on the proband. Targeted next-generation sequencing (NGS) combined with bioinformatics analysis was performed on the proband to detect candidate disease-causing mutations. Sanger sequencing was performed on all subjects to confirm the candidate mutations and assess cosegregation within the family. Results Clinical examinations of the proband showed typical characteristics of RP. Three candidate heterozygous mutations in 3 genes associated with RP were detected in the proband by targeted NGS. The 3 mutations were confirmed by Sanger sequencing and the deletion (c.357_358delAA) in PRPF31 was shown to cosegregate with RP phenotype in 7 affected family members, but not in 3 unaffected family members. Conclusions The deletion (c.357_358delAA) in PRPF31 was the disease-causing mutation for the proband and his affected family members with RP. To our knowledge, this is the second report of the deletion and the first report of the other 2 mutations in the Chinese population. Targeted NGS combined with bioinformatics analysis proved to be an effective molecular diagnostic tool for RP.


Sign in / Sign up

Export Citation Format

Share Document