usher syndrome type
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 42)

H-INDEX

45
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Shin-ichi Usami ◽  
Yuichi Isaka ◽  
Maiko Miyagawa ◽  
Shin-ya Nishio

AbstractVariants in the CDH23 gene are known to be responsible for both syndromic hearing loss (Usher syndrome type ID: USH1D) and non-syndromic hearing loss (DFNB12). Our series of studies demonstrated that CDH23 variants cause a broad range of phenotypes of non-syndromic hearing loss (DFNB12); from congenital profound hearing loss to late-onset high-frequency-involved progressive hearing loss. In this study, based on the genetic and clinical data from more than 10,000 patients, the mutational spectrum, clinical characteristics and genotype/phenotype correlations were evaluated. The present results reconfirmed that the variants in CDH23 are an important cause of non-syndromic sensorineural hearing loss. In addition, we showed that the mutational spectrum in the Japanese population, which is probably representative of the East Asian population in general, as well as frequent CDH23 variants that might be due to some founder effects. The present study demonstrated CDH23 variants cause a broad range of phenotypes, from non-syndromic to syndromic hearing loss as well as from congenital to age-related hearing loss. Genotype (variant combinations) and phenotype (association with retinal pigmentosa, onset age) are shown to be well correlated and are thought to be related to the residual function defined by the CDH23 variants.


2021 ◽  
Vol 14 (12) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Amanda Miles is first author on ‘ Usher syndrome type 1-associated gene, pcdh15b, is required for photoreceptor structural integrity in zebrafish’, published in DMM. Amanda is a PhD student in the lab of Vincent Tropepe at the University of Toronto, Toronto, Canada, investigating disease modelling for retinal development and disease mechanisms.


Author(s):  
Shanees. E

Usher syndrome is a condition that affects both hearing and vision; sometimes it also affects balance. The major symptoms of Usher syndrome are deafness or hearing loss and an eye disease called retinitis pigmentosa (RP). Most children with Usher syndrome are born with moderate to profound hearing loss, depending on the type. Less commonly, hearing loss from Usher syndrome appears during adolescence or later.1 Usher syndrome affects approximately 4 to 17 per 100,000 people,2,3 and accounts for about 50 percent of all hereditary deaf- blindness cases.4 . Usher syndrome is inherited as an autosomal recessive disorder. Usher syndrome is caused by mutations in specific genes. So far, Usher syndrome has been associated with mutations in at least ten genes. There are three types of Usher syndrome, type I, type II and type III 1. Diagnosis of Usher syndrome involves pertinent questions regarding the person’s medical history and testing of hearing, balance, and vision. Early diagnosis is important, as it improves treatment success. Genetic testing may help in diagnosing Usher syndrome. Presently, there is no cure for Usher syndrome. Treatment involves managing hearing, vision, and balance problems. Early diagnosis helps tailor educational programs that consider the severity of hearing and vision loss and a child’s age and ability.1 Usher Syndrome Awareness Day is observed in the third Saturday of September. Usher Syndrome Awareness Day seeks to bring attention and raise awareness of the most common genetic cause of combined deafness and blindness.5


Author(s):  
Amanda Miles ◽  
Clarke Blair ◽  
Andrew Emili ◽  
Vincent Tropepe

Blindness associated with Usher Syndrome Type 1 (USH1) is typically characterized as rod photoreceptor degeneration, followed by secondary loss of cones. The mechanisms leading to blindness are unknown since most genetic mouse models only recapitulate auditory defects. We generated zebrafish mutants for one of the USH1 proteins, protocadherin-15b (pcdh15b), a putative cell adhesion molecule. Zebrafish pcdh15 is expressed exclusively in photoreceptors within calyceal processes (CPs), at the base of the outer segment (OS), and within the synapse. In our mutants, rod and cone photoreceptor integrity is compromised with early and progressively worsening abnormal OS disc growth and detachment, in part due to weakening CP contacts. These effects were attenuated or exacerbated by growth in dark and bright light conditions, respectively. We also describe novel evidence for structural defects in synapses of pcdh15 mutant photoreceptors. Cell death does not accompany these defects at early stages, suggesting that photoreceptor structural defects, rather than overt cell loss, may underlie vision deficits. Thus, we present the first genetic animal model of a pcdh15-associated retinopathy that can be used to understand the etiology of blindness in USH1.


2021 ◽  
Vol 22 (19) ◽  
pp. 10352
Author(s):  
Ana Fakin ◽  
Crystel Bonnet ◽  
Anne Kurtenbach ◽  
Saddek Mohand-Said ◽  
Ditta Zobor ◽  
...  

In contrast to USH2A, variants in ADGRV1 are a minor cause of Usher syndrome type 2, and the associated phenotype is less known. The purpose of the study was to characterize the retinal phenotype of 18 ADGRV1 patients (9 male, 9 female; median age 52 years) and compare it with that of 204 USH2A patients (111 male, 93 female; median age 43 years) in terms of nyctalopia onset, best corrected visual acuity (BCVA), fundus autofluorescence (FAF), and optical coherence tomography (OCT) features. There was no statistical difference in the median age at onset (30 and 18 years; Mann–Whitney U test, p = 0.13); the mean age when 50% of the patients reached legal blindness (≥1.0 log MAR) based on visual acuity (64 years for both groups; log-rank, p = 0.3); the risk of developing advanced retinal degeneration (patch or atrophy) with age (multiple logistic regression, p = 0.8); or the frequency of cystoid macular edema (31% vs. 26%, Fisher’s exact test, p = 0.4). ADGRV1 and USH2A retinopathy were indistinguishable in all major functional and structural characteristics, suggesting that the loss of function of the corresponding proteins produces similar effects in the retina. The results are important for counseling ADGRV1 patients, who represent the minor patient subgroup.


2021 ◽  
Author(s):  
Björn Kowalewski ◽  
Heike Lange ◽  
Sabrina Galle ◽  
Thomas Dierks ◽  
Torben Lübke ◽  
...  

The lysosomal degradation of heparan sulfate is mediated by the concerted action of nine different enzymes. Within this degradation pathway, Arylsulfatase G (ARSG) is critical for removing 3-O-sulfate from glucosamine, and mutations in ARSG are causative for Usher syndrome type IV. We developed a specific ARSG enzyme assay using sulfated monosaccharide substrates, which reflect derivatives of its natural substrates. These sulfated compounds were incubated with ARSG, and resulting products were analyzed by reversed-phase HPLC after chemical addition of the fluorescent dyes 2-aminoacridone or 2-aminobenzoic acid, respectively. We applied the assay to further characterize ARSG regarding its hydrolytic specificity against 3-O-sulfated monosaccharides containing additional sulfate-groups and N-acetylation. The application of recombinant ARSG and cells overexpressing ARSG as well as isolated lysosomes from wildtype and Arsg knockout mice validated the utility of our assay. We further exploited the assay to determine the sequential action of the different sulfatases involved in the lysosomal catabolism of 3-O-sulfated glucosamine residues of heparan sulfate. Our results confirm and extend the characterization of the substrate specificity of ARSG and help to determine the sequential order of the lysosomal catabolic breakdown of (3-O-)sulfated heparan sulfate.


2021 ◽  
Author(s):  
M. Stemerdink ◽  
B. García-Bohórquez ◽  
R. Schellens ◽  
G. Garcia-Garcia ◽  
E. Van Wijk ◽  
...  

2021 ◽  
Author(s):  
Shin-ichi Usami ◽  
Yuichi Isaka ◽  
Maiko Miyagawa ◽  
Shin-ya Nishio

Abstract Variants in the CDH23 gene are known to be responsible for both syndromic hearing loss (Usher syndrome type ID: USH1D) and non-syndromic hearing loss (DFNB12). Our series of studies demonstrated that CDH23 variants cause broad phenotypes of non-syndromic hearing loss (DFNB12); from congenital profound hearing loss to late-onset high frequency-involved progressive hearing loss. In this study, using genetic and clinical data from more than 10,000 patients, the mutational spectrum, clinical characteristics and genotype/phenotype correlations were evaluated. The present results reconfirmed that the variants in CDH23 are an important cause of non-syndromic sensorineural hearing loss. In addition, we showed that the mutational spectrum in the Japanese population, which is probably representative of the east Asian population in general, and the frequent CDH23 variants that might be due to some founder effects. The present study demonstrated CDH23 variants cause a broad range of phenotypes, from non-syndromic to syndromic hearing loss as well as from congenital to age-related hearing loss. Genotype (variant combination) and phenotype (association of retinal pigmentosa, onset age) are shown to be well correlated, and are thought to be related to the residual function defined by the CDH23 variants.


Sign in / Sign up

Export Citation Format

Share Document