A study of the probabilistic risk assessment to the dry storage system of spent nuclear fuel

2010 ◽  
Vol 87 (1) ◽  
pp. 17-25 ◽  
Author(s):  
K.C. Chen ◽  
K. Ting ◽  
Y.C. Li ◽  
Y.Y. Chen ◽  
W.K. Cheng ◽  
...  
2021 ◽  
Author(s):  
Ryan M. Meyer ◽  
Jeremy Renshaw ◽  
Jamie Beard ◽  
Jon Tatman ◽  
Matt Keene ◽  
...  

Abstract This paper describes development and demonstration of remote crawling systems to support periodic examinations of interim dry storage system (DSS) canisters for spent nuclear fuel in the USA. Specifically, this work relates to robotic crawler developments for “canister” based DSS systems, which form the majority population of DSSs in the USA for interim storage of spent nuclear fuel. Consideration of potential degradation of the welded stainless-steel canister in these systems is required for continued usage in the period of extended operation (PEO) beyond their initial licensed or certified terms. Challenges with performing the periodic examinations are associated with physical access to the canister surface, which is constrained due to narrow annulus spaces between the canister and the overpack, tortuous entry pathways, and high temperatures and radiation doses that can be damaging to materials and electronics. Motivations for performing periodic examinations and developing robotic crawlers for performing those examinations remotely will be presented, and several activities to demonstrate robotic crawlers for different DSS systems are summarized.


2021 ◽  
Author(s):  
Ryan M. Meyer ◽  
Jeremy Renshaw ◽  
Kenn Hunter ◽  
Mike Orihuela ◽  
Jim Stadler ◽  
...  

Abstract This paper describes development and demonstration of nondestructive examination (NDE) technologies to support periodic examinations of interim dry storage system (DSS) canisters for spent nuclear fuel in the USA to verify continued safe operation and that the canister confinement is intact and performing its intended safety function. Specifically, this work relates to NDE technology development for “canister” based DSS systems, which form the majority population of DSSs in the USA for interim storage of spent nuclear fuel. Consideration of potential degradation of the welded stainless-steel canister in these systems is required for continued usage in the period of extended operation (PEO) beyond the initial license or certified term. Physical access to the canister surface is constrained due to narrow annulus spaces between the canister and the overpack, tortuous entry pathways, and high temperatures and radiation doses that can be damaging to materials and electronics related to inspections. Several activities to demonstrate NDE technologies for the inspections of different DSS systems are summarized.


2015 ◽  
Vol 816 ◽  
pp. 103-107
Author(s):  
Jozef Bocko ◽  
Pavol Lengvarský

The paper is devoted to the description of project of storage system for the spent nuclear fuel. The proposed dry storage system is based on the natural convection of air so no additional fans are needed for the cooling. In the paper basic parameters of the storage as well as some preliminary computations verifying its concept are described.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Shadwan M. M. Esmail ◽  
Jae Hak Cheong

In the planning and management of the interim storage of spent nuclear fuel, the technical and economic parameters that are involved have a significant role in increasing the efficiency of the storage system. Optimal parameters will reduce the total economic costs for countries embarking on nuclear energy, such as the UAE. This study evaluated the design performance and economic feasibility of various structures and schedules, to determine an optimal combination of parameters for the management of spent nuclear fuel. With the introduction of various storage technology arrangements and expected costs per unit for the storage system design, we evaluated eight major scenarios, each with a cost analysis based on technological and economic issues. We executed a number of calculations based on the use of these storage technologies, and considered their investment costs. These calculations, which were aligned with the net present value approach and conducted using MS Project and MATLAB software programs, considered the capacities of the spent fuel pools and the amount of spent nuclear fuel (SNF) that will be transferred to dry storage facilities. As soon as they sufficiently cool, the spent nuclear fuel is to be stored in a pool storage facility. The results show that applying a centralized dry storage (CDS) system strategy is not an economically feasible solution, compared with using a permanent disposal facility (PDF) (unless the variable investment cost is reduced or changed). The optimal strategy involves operating a spent fuel pool island (SFPI) storage after the first 20 years of the start of the permanent shutdown of the reactor. After 20 years, the spent fuel is then transferred to a PDF. This strategy also results in a 20.9% to 26.1% reduction in the total cost compared with those of the other strategies. The total cost of the proposed strategy is approximately 4,307 million USD. The duration of the fuel storage and the investment cost, particularly the variable investment cost, directly affect the choice of facility storage.


Sign in / Sign up

Export Citation Format

Share Document