collision probability
Recently Published Documents


TOTAL DOCUMENTS

494
(FIVE YEARS 151)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 245 ◽  
pp. 110583
Author(s):  
Honglu Gu ◽  
Haiyan Guo ◽  
Fengtao Bai ◽  
Xiaomin Li ◽  
Fuheng Li

2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Jorge A. Pérez-Hernández ◽  
Luis Benet

AbstractThe leading source of uncertainty to predict the orbital motion of asteroid (99942) Apophis is a non-gravitational acceleration arising from the anisotropic thermal re-emission of absorbed radiation, known as the Yarkovsky effect. Previous attempts to obtain this parameter from astrometry for this object have only yielded marginally small values, without ruling out a pure gravitational interaction. Here we present an independent estimation of the Yarkovsky effect based on optical and radar astrometry which includes observations obtained during 2021. Our numerical approach exploits automatic differentiation techniques. We find a non-zero Yarkovsky parameter, A2 = (−2.899 ± 0.025) × 10−14 au d−2, with induced semi-major axis drift of (−199.0 ± 1.5) m yr−1 for Apophis. Our results provide definite collision probability predictions for the close approaches in 2029, 2036, and 2068.


Author(s):  
Shuta Fukii ◽  
Daisuke Sakai ◽  
Yasuhiro Yoshimura ◽  
Yuri Matsushita ◽  
Toshiya Hanada ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Sooyoung Choi ◽  
Wonkyeong Kim ◽  
Deokjung Lee

The pin-based pointwise energy slowing-down method (PSM), which is a resonance self-shielding method, has been refined to treat the nonuniformity of material compositions and temperature profile in the fuel pellet by calculating the exact collision probability in the radially subdivided fuel pellet under the isolated system. The PSM has generated the collision probability table before solving the pointwise energy slowing-down equation. It is not exact if the fuel pellet has nonuniform material compositions or temperature profile in all the subdivided regions. In the refined PSM-CPM, the pre-generated table is not required for directly calculating the collision probability in all the subdivided regions of the fuel pellet while solving the slowing-down equation. There are an advantage and a disadvantage to the method. The advantage is to exactly consider the nonuniformity of the material compositions and temperature profile in the fuel pellet. The disadvantage is the longer computing time than that of the PSM when the fuel pellet has more than five subdivided regions. However, in the practical use for UO2 pin-cells, it is still comparable for the computation time with the PSM and the conventional equivalence theory methods. In this article, using simple light water reactor 17 × 17 F A problems with a uniform material composition and temperature profile, it is demonstrated that PSMs (PSM and PSM-CPM) exhibit consistent accuracy in calculating the multiplication factor and the pin power distribution with no compromise in the computation time. More detailed accuracy assessments with various test cases, including problems representing the nonuniformity, are presented in the accompanying article.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wonkyeong Kim ◽  
Sooyoung Choi ◽  
Deokjung Lee

The pin-based pointwise energy slowing-down method (PSM) has been refined through eliminating the approximation for using the pre-tabulated collision probability during the slowing-down calculation. A collision probability table is generated by assuming that material composition and temperature are constant in the fuel pellet using the collision probability method (CPM). Refined PSM (PSM-CPM), which calculates the collision probability in the isolated fuel pellet during the slowing-down calculation using CPM, can consider nonuniform material and temperature distribution. For the methods, the extensive comparative analysis is performed with problems representing various possible conditions in a light water reactor (LWR) design. Conditions are categorized with the geometry, material distribution, temperature profile in the fuel pellet, and burnup. With test problems, PSMs (PSM and PSM-CPM) have been compared with conventional methods based on the equivalence theory. With overall calculation results, PSMs show the accuracy in the eigenvalue with differences in the order of 100 pcm compared to the reference results. There was no noticeable difference in the multigroup cross sections, reaction rates, and pin power distributions. However, PSM-CPM maintains the accuracy in the calculation of the fuel temperature coefficient under the condition with 200% power and nonuniform temperature distribution in the fuel pellet. PSM shows the difference in the eigenvalue in the order of 2,000 pcm for the fictitious pin-cell problem with highly steep temperature profiles and material compositions, but PSM-CPM shows the difference in the eigenvalue within 100 pcm.


2021 ◽  
Author(s):  
William Lee ◽  
Paul Martin ◽  
Ann Smith ◽  
Giancarlo Antonucci ◽  
Georgia Brennan ◽  
...  

Low Earth Orbit is becoming crowded with satellites. Updating estimates of collision probabilities is important as new deployments are authorised but is difficult because only limited information is given. This report investigates developing analytic estimates of collision probabilities. A survey of approaches reported in the literature is carried out. A collision involving a satellite from the Iridium cluster is reviewed. A simple analytic expression for the collision probability between two satellites is derived using the smallness of several dimensionless ratios appearing in the problem. Single collision probabilities are then extended to orbital planes populated by n satellites with the aim of finding the optimal point at which to traverse such an orbit. This report demonstrates that analytic estimates relevant to the problem can be made. Further work should focus on: making these estimates rigorous by using a formal asymptotic approach, considering multiple orbital planes and introducing time dependence


2021 ◽  
Vol 9 ◽  
Author(s):  
Fei Wang ◽  
Liyuan Yang ◽  
Xue-Quan Xian

Owing to their attractive potential in optoelectronic application, luminescent Ru(II) complexes with diamine ligands are harvesting more and more research efforts. These literature efforts, however, are mostly mononuclear ones, with no detailed discussion on the performance comparison between mononuclear and multinuclear Ru(II) complexes. This work synthesized three diamine ligands having two or multiple chelating sites in each ligand, as well as their Ru(II) complexes. The single-crystal structure, electronic structure, and photophysical parameters of these Ru(II) complexes were analyzed and compared. It was found that multinuclear Ru(II) complexes had a pure MLCT (metal-to-ligand charge transfer)–based emissive center, showing longer emission lifetime and higher emission quantum yield, which were desired for oxygen sensing. Then, the oxygen sensing performance of these mononuclear and multinuclear Ru(II) complexes was systematically compared by doping them into polymer fibers via electrospinning method. Improved oxygen sensing performance was observed from binuclear Ru(II)-doped nanofibrous samples, compared with the sensing performance of mononuclear ones, including higher sensitivity, shorter response/recovery time, and better photostability. The causation was attributed to the fact that the emissive state of multinuclear Ru(II) complexes was MLCT-based ones and thus more sensitive to O2 quenching than monocular Ru(II) complexes whose emissive state was a mixture of MLCT and LLCT (ligand-to-ligand charge transfer). In addition, a multinuclear Ru(II) complex had multiple emissive/sensing components, so that its sensing collision probability with O2 was increased, showing better photostability and shorter response/recovery time. The novelty of this work was the linear oxygen sensing curve, which was rarely reported in the previous work.


2021 ◽  
Vol 9 (12) ◽  
pp. 1321
Author(s):  
Lifei Song ◽  
Xiaoqian Shi ◽  
Hao Sun ◽  
Kaikai Xu ◽  
Liang Huang

Dynamic collision avoidance between multiple vessels is a task full of challenges for unmanned surface vehicle (USV) movement, which has high requirements on real-time performance and safety. The difficulty of multi-obstacle collision avoidance is that it is hard to formulate the optimal obstacle avoidance strategy when encountering more than one obstacle threat at the same time; a good strategy to avoid one obstacle sometimes leads to threats from other obstacles. This paper presents a dynamic collision avoidance algorithm for USVs based on rolling obstacle classification and fuzzy rules. Firstly, potential collision probabilities between a USV and obstacles are calculated based on the time to the closest point of approach (TCPA). All obstacles are given different priorities based on potential collision probability, and the most urgent and secondary urgent ones will then be dynamically determined. Based on the velocity obstacle algorithm, four possible actions are defined to determine the basic domain in the collision avoidance strategy. After that, the Safety of Avoidance Strategy and Feasibility of Strategy Adjustment are calculated to determine the additional domain based on fuzzy rules. Fuzzy rules are used here to comprehensively consider the situation composed of multiple motion obstacles and the USV. Within the limited range of the basic domain and the additional domain, the optimal collision avoidance parameters of the USV can be calculated by the particle swarm optimization (PSO) algorithm. The PSO algorithm utilizes both the characteristic of pursuance for the population optimal and the characteristic of exploration for the individual optimal to avoid falling into the local optimal solution. Finally, numerical simulations are performed to certify the validity of the proposed method in complex traffic scenarios. The results illustrated that the proposed method could provide efficient collision avoidance actions.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7536
Author(s):  
Sabrina Islam Muna ◽  
Srijita Mukherjee ◽  
Kamesh Namuduri ◽  
Marc Compere ◽  
Mustafa Ilhan Akbas ◽  
...  

Air corridors are an integral part of the advanced air mobility infrastructure. They are the virtual highways in the sky for the transportation of people and cargo in a controlled airspace at an altitude of around 1000 ft. to 2000 ft. above ground level. These corridors will be utilized by (unmanned) air taxis, which will be deployed in rural and metropolitan regions to carry passengers and freight, as well as air ambulances, which will be deployed to offer first responder services such as 911 emergencies. This paper presents fundamental insights into the design of air corridors with high operational efficiency as well as zero collisions. It begins with the definitions of air cube, skylane or track, intersection, vertiport, gate, and air corridor. Then a multi-layered air corridor model is proposed. Traffic at intersections is analyzed in detail with examples of vehicles turning in different directions. The concept of capacity of an air corridor is introduced along with the nature of distribution of locations of vehicles in the air corridor and collision probability inside the corridor are discussed. Finally, results of traffic flow simulations are presented.


Sign in / Sign up

Export Citation Format

Share Document