Microcrack nucleation and early crack growth of a nuclear grade nitrogen alloyed austenitic stainless steel X2CrNiMo18.12 under thermomechanical fatigue loading

2019 ◽  
Vol 172 ◽  
pp. 188-198 ◽  
Author(s):  
Bingbing Li ◽  
Yiming Zheng ◽  
Shouwen Shi ◽  
Xu Chen
2006 ◽  
Vol 48 (1-2) ◽  
pp. 44-49
Author(s):  
Valérie Maillot ◽  
Gérard Degallaix ◽  
Suzanne Degallaix ◽  
Antoine Fissolo

Author(s):  
Li H. Wang

Fatigue crack growth rates (FCGR) of sensitized austenitic stainless steel (SS) were measured in simulated BWR water at 288 °C using compact tension specimens under different cyclic loading modes, including saw-tooth, trapezoidal and constant loading pattern. This study tested sensitized SS in normal water chemistry (NWC) and hydrogen water chemistry (HWC) respectively, and attempted to clarify the effect of low electrochemical corrosion potential on the FCGR of sensitized stainless steel. Significant environment effects on FCGR of sensitized stainless steel were observed in both water chemistries when compared with air fatigue curve. The pronounced suppression effect of HWC on crack growth in statically sustained load was not observed in cyclic loading condition. ASME curve doesn’t seem to be conservative and could not bound all the FCGR data tested in this study. In contrast, all of the measured FCGR data were bound by the JSME disposition curve. PLEDGE model proposed by General Electric reasonably predicted the FCGR of sensitized SS in NWC, but underestimated the FCGR in HWC. ANL’s superposition model successfully estimated the FCGR measured in both water chemistries. The fractography exhibited transgranular fracture mode during the crack initiation and growth stage. No differences in the appearance of fracture surface were observed in HWC and NWC. Only in very high DO environments, the sensitized 304 SS exhibited the mixed mode of intergranular and transgranular during growth stage.


2007 ◽  
Vol 353-358 ◽  
pp. 485-490 ◽  
Author(s):  
Y.M. Baik ◽  
K.S. Kim

Crack growth in compact specimens of type 304 stainless steel is studied at 538oC. Loading conditions include pure fatigue loading, static loading and fatigue loading with hold time. Crack growth rates are correlated with the stress intensity factor. A finite element analysis is performed to understand the crack tip field under creep-fatigue loading. It is found that fatigue loading interrupts stress relaxation around the crack tip and cause stress reinstatement, thereby accelerating crack growth compared with pure static loading. An effort is made to model crack growth rates under combined influence of creep and fatigue loading. The correlation with the stress intensity factor is found better when da/dt is used instead of da/dN. Both the linear summation rule and the dominant damage rule overestimate crack growth rates under creep-fatigue loading. A model is proposed to better correlate crack growth rates under creep-fatigue loading: 1 c f da da da dt dt dt Ψ −Ψ     =         , where Ψ is an exponent determined from damage under pure fatigue loading and pure creep loading. This model correlates crack growth rates for relatively small loads and low stress intensity factors. However, correlation becomes poor as the crack growth rate becomes large under a high level of load.


Author(s):  
Pauline Bouin ◽  
Antoine Fissolo ◽  
Ce´dric Gourdin

This paper covers work carried out by the French Atomic Energy Commission (CEA) to investigate on mechanisms leading to cracking of piping as a result of thermal loading existing in flow mixing zones. The main purpose of this work is to analyse, with a new experiment and its numerical interpretation, and to understand the mechanism of propagation of cracks in such components. To address this issue, a new specimen has been developed on the basis of the Fat3D experiment. This thermal fatigue test consists in heating a 304L steel pre-cracked tube while cyclically injecting ambient water onto its inner surface. The tube is regularly removed from the furnace for a crack characterisation. Finally, the crack growth is evaluated from the crack length differences between two stops. In parallel, a finite element analysis is developed using the finite element Cast3M code. A pipe with a semi-elliptical crack on its inner surface is modelled. A cyclic thermal loading is imposed on the tube. This loading is in agreement with experimental data. The crack propagates through the thickness. A prediction of the velocity of the crack is finally assessed using a Paris’ law type criteria. Finally, this combined experimental and numerical work on 304L austenitic stainless steel pipes will enable to improve existing methods to accurately predict the crack growth under cyclic thermal loadings in austenitic stainless steel pipe at the design stage.


1996 ◽  
Vol 118 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Shinji Konosu ◽  
Tomohiro Kishiro ◽  
Ogi Ivano ◽  
Yoshihiko Nunoya ◽  
Hideo Nakajima ◽  
...  

The structural materials of the coils of superconducting magnets utilized in thermonuclear fusion reactors are used at liquid helium (4.2 K) temperatures and are subjected to repeated thermal stresses and electromagnetic forces. A high strength, high toughness austenitic stainless steel (12Cr-12Ni-10Mn-5Mo-0.2N) has recently been developed for large, thick-walled components used in such environments. This material is non-magnetic even when subjected to processing and, because it is a forging material, it is advantageous as a structural material for large components. In the current research, a large forging of 12Cr-12Ni-10Mn-5Mo-0.2N austenitic stainless steel, was fabricated to a thickness of 250 mm, which is typical of section thicknesses encountered in actual equipment. The tensile fatigue crack growth properties of the forging were examined at liquid helium temperature as function of specimen location across the thickness of the forging. There was virtually no evidence of variation in tensile strength or fatigue crack growth properties attributable to different sampling locations in the thickness direction and no effect of thickness due to the forging or solution treatment associated with large forgings was observed. It has been clarified that there are cases in which small scale yielding (SSY) conditions are not fulfilled when stress ratios are large. ΔJ was introduced in order to achieve unified expression inclusive of these regions and, by expressing crack growth rate accordingly, the following formula was obtained at the second stage (middle range). da/dN = CJ ΔJmJ, CJ = AJ/(ΔJ0)mJ, where, AJ = 1.47 × 10−5 mm/cycle, ΔJ0 = 2.42 × 103N/m.


Sign in / Sign up

Export Citation Format

Share Document