Analytical solution of thermo-mechanical stresses of multi-layered hollow spherical pressure vessel

Author(s):  
L.C. Sim ◽  
W.H. Yeo ◽  
J. Purbolaksono ◽  
L.H. Saw ◽  
J.Y. Tey
Author(s):  
Ali Nayebi ◽  
Azam Surmiri ◽  
Hojjatollah Rokhgireh

In cyclic loading and when plastic flow occurs, discontinuities grow. In this research, interaction diagram of Bree has been developed when the spherical pressure vessel contains discontinuities such as voids and microcracks. Bree’s diagram is used for ratcheting assessment of pressurized equipment in ASME III NH. Nature of these defects leads to an anisotropic damage. Anisotropic Continuum Damage Mechanics (CDM) is considered to account effects of these discontinuities on the behavior of the structure. Shakedown – ratcheting response of a hollow sphere under constant internal pressure and cyclic thermal loadings are studied by using anisotropic CDM theory coupled with nonlinear kinematic hardening of Armstrong-Frederick m’s model (A-F). Return mapping method is used to solve numerically the developed relations. Elastic, elastic shakedown, plastic shakedown and ratcheting regions are illustrated in the modified Bree’s diagram. Influence of anisotropic damage due to the plastic deformation is studied and it was shown that the plastic shakedown region is diminished because of the developed damage.


Author(s):  
M. Perl

The equivalent thermal load was previously shown to be the only feasible method by which the residual stresses due to autofrettage and its redistribution, as a result of cracking, can be implemented in a finite element analysis, of a fully or partially autofrettaged thick-walled cylindrical pressure vessel. The present analysis involves developing a similar methodology for treating an autofrettaged thick-walled spherical pressure vessel. A general procedure for evaluating the equivalent temperature loading for simulating an arbitrary, analytical or numerical, spherosymmetric autofrettage residual stress field in a spherical pressure vessel is developed. Once presented, the algorithm is applied to two distinct cases. In the first case, an analytical expression for the equivalent thermal loading is obtained for the ideal autofrettage stress field in a spherical shell. In the second case, the algorithm is applied to the discrete numerical values of a realistic autofrettage residual stress field incorporating the Bauschinger effect. As a result, a discrete equivalent temperature field is obtained. Furthermore, a finite element analysis is performed for each of the above cases, applying the respective temperature field to the spherical vessel. The induced stress fields are evaluated for each case and then compared to the original stress. The finite element results prove that the proposed procedure yields equivalent temperature fields that in turn simulate very accurately the residual stress fields for both the ideal and the realistic autofrettage cases.


Sign in / Sign up

Export Citation Format

Share Document