anisotropic damage
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 46)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 320 ◽  
pp. 126284
Author(s):  
Tao He ◽  
Tongtao Wang ◽  
Dongzhou Xie ◽  
Junhua Liu ◽  
J.J.K. Daemen

2021 ◽  
Vol 9 ◽  
Author(s):  
Shuangshuang Yuan ◽  
Qizhi Zhu ◽  
Wanlu Zhang ◽  
Jin Zhang ◽  
Lunyang Zhao

A micromechanical anisotropic damage model with a non-associated plastic flow rule is developed for describing the true triaxial behaviors of brittle rocks. We combine the Eshelby’s solution to the inclusion problem with the framework of irreversible thermodynamics. The main dissipative mechanisms of inelastic deformation due to the frictional sliding and damage by microcrack propagation are strongly coupled to each other. A Coulomb-type friction criterion is formulated in terms of the local stress applied onto the microcracks as the yielding function. The back-stress term contained in this local stress plays a critical role in describing the material’s hardening/softening behaviors. With a non-associated flow rule, a potential function is involved. Some analytical analysis of the non-associated micromechanical anisotropic damage model are conducted, which are useful for the model parameters calibration. The proposed model is used to simulate the laboratory tests on Westerly granite under true triaxial stresses. Comparing the numerical simulation results provided by the models with associated/non-associated plastic flow rule and experimental results, it is clear that the proposed non-associated model gives a better prediction than the previous associated model.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Tenglong Rong ◽  
Can Guan ◽  
Keliu Liu ◽  
Shuai Heng ◽  
Wenlong Shen ◽  
...  

The damage constitutive model is of great significance to research the stress-strain relationship and damage evolution of rock under loading in engineering. In order to investigate the effect of anisotropic characteristic on the stress-strain relationship and damage evolution, a statistical damage constitutive model of anisotropic rock under true triaxial condition was developed. In this study, the plane which existed perpendicular to the coordinate axis was extracted from representative volume element (RVE) of rock. The extracted plane was assumed to be composed of abundant mesoscopic elements whose failure strength satisfied the Weibull distribution. According to the number of failure elements on the plane in each direction under loading, the anisotropic damage variable was established based on the proposed concept of areal damage. A statistical damage constitutive model of anisotropic rock was developed by using strain equivalent hypothesis and generalized Hooke constitutive model. Subsequently, the parameters in the anisotropic damage constitutive model were determined by the method of total differential. Thus, the damage evolution of anisotropic rock under various stress conditions can be conveniently evaluated by the anisotropic damage model. The model was validated based on the tests of rocks under the stress conditions of conventional triaxial and true triaxial, respectively. Moreover, for the purpose of studying the influence of parameters on the model, sensitivity analyses of mechanical parameters and model parameters were carried out. The results of statistical damage constitutive clearly demonstrate the stress-strain and damage evolution of anisotropic rock under various stress conditions.


2021 ◽  
Vol 225 ◽  
pp. 111048
Author(s):  
Jani Vilppo ◽  
Reijo Kouhia ◽  
Juha Hartikainen ◽  
Kari Kolari ◽  
Alexis Fedoroff ◽  
...  

2021 ◽  
pp. 110548
Author(s):  
H. Khajehsaeid ◽  
M. Tehrani ◽  
N. Alaghehband

Sign in / Sign up

Export Citation Format

Share Document