scholarly journals Development of analytical solution for thermo-mechanical stresses of multi-layered hollow cylinder for the application of underground hydrogen storage

Author(s):  
L C Sim ◽  
W H Yeo ◽  
J Pubolaksono ◽  
L H Saw ◽  
J Y Tey ◽  
...  
Author(s):  
G Atefi ◽  
M A Abdous ◽  
A Ganjehkaviri ◽  
N Moalemi

The objective of this article is to derive an analytical solution for a two-dimensional temperature field in a hollow cylinder, which is subjected to a periodic boundary condition at the outer surface, while the inner surface is insulated. The material is assumed to be homogeneous and isotropic with time-independent thermal properties. Because of the time-dependent term in the boundary condition, Duhamel's theorem is used to solve the problem for a periodic boundary condition. The periodic boundary condition is decomposed using the Fourier series. This condition is simulated with harmonic oscillation; however, there are some differences with the real situation. To solve this problem, first of all the boundary condition is assumed to be steady. By applying the method of separation of variables, the temperature distribution in a hollow cylinder can be obtained. Then, the boundary condition is assumed to be transient. In both these cases, the solutions are separately calculated. By using Duhamel's theorem, the temperature distribution field in a hollow cylinder is obtained. The final result is plotted with respect to the Biot and Fourier numbers. There is good agreement between the results of the proposed method and those reported by others for this geometry under a simple harmonic boundary condition.


2017 ◽  
Vol 42 (36) ◽  
pp. 22987-23003 ◽  
Author(s):  
Alain Le Duigou ◽  
Anne-Gaëlle Bader ◽  
Jean-Christophe Lanoix ◽  
Lionel Nadau

2021 ◽  
Author(s):  
Orsolya Gelencsér ◽  
Zsuzsanna Szabó-Krausz ◽  
László Mika ◽  
Daniel Breitner ◽  
Tibor Németh ◽  
...  

2021 ◽  
pp. 1-27
Author(s):  
Esteban R. Ugarte ◽  
Saeed Salehi

Abstract Renewable energy production is limited by the fluctuations limiting their application. Underground Hydrogen Storage (UHS) is one possible alternative to reduce the gap between supply and demand by storing the energy converted to hydrogen as a carrier and store it during surplus to produce it during high demand periods. The hydrogen is stored in the subsurface in geological formations containing the gas and is injected/produced via wells. There is a lack of experience associated with this technology and only a small number of projects worldwide. There are several mechanisms that can compromise the integrity of the well and generate leakage of the stored gas. This paper aims to introduce the challenges associated with well integrity of UHS. Mechanisms that can compromise well integrity and generate leaks include microbial corrosion, hydrogen blistering hydrogen induced cracking and hydrogen embrittlement, cement degradation, elastomer failure, and caprock sealing failure. Propose well completion criteria, recommendation, and materials selection for newly constructed wells or existing wells. A comparison with more developed storage technologies aims to provide a better understanding of the limitations of hydrogen storage by comparing it to carbon dioxide (Carbon Capture and Storage) and methane (Underground Gas Storage). Finally, evaluation and monitoring techniques are required to see the influence of hydrogen on well integrity. Future research and development will reduce the uncertainties and limitations associated with UHS increasing its feasibility and implementation.


2021 ◽  
Vol 46 (5) ◽  
pp. 3365-3378
Author(s):  
Zachary Taie ◽  
Gertrude Villaverde ◽  
Jennifer Speaks Morris ◽  
Zoe Lavrich ◽  
Anna Chittum ◽  
...  

1977 ◽  
Vol 9 (7) ◽  
pp. 825-828
Author(s):  
A. L. Bichuya ◽  
V. L. Lozben' ◽  
S. T. Stasyuk

2021 ◽  
Vol 46 (69) ◽  
pp. 34356-34361 ◽  
Author(s):  
Ahmed Al-Yaseri ◽  
Domenik Wolff-Boenisch ◽  
Cut Aja Fauziah ◽  
Stefan Iglauer

Sign in / Sign up

Export Citation Format

Share Document