Effect of anisotropy and hydro-mechanical couplings on pore pressure evolution during tunnel excavation in low-permeability ground

Author(s):  
Lina-María Guayacán-Carrillo ◽  
Siavash Ghabezloo ◽  
Jean Sulem ◽  
Darius M. Seyedi ◽  
Gilles Armand
Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. KS105-KS118 ◽  
Author(s):  
Himanshu Barthwal ◽  
Mirko van der Baan

Hydraulic fracturing in low-permeability hydrocarbon reservoirs creates/reactivates a fracture network leading to microseismic events. We have developed a simplified model of the evolution of the microseismic cloud based on the opening of a planar fracture cavity and its effect on elastic stresses and pore pressure diffusion during fluid injection in hydraulic fracturing treatments. Using a material balance equation, we compute the crack tip propagation over time assuming that the hydraulic fracture is shaped as a single penny-shaped cavity. Results indicate that in low-permeability formations, the crack tip propagates much faster than the pore pressure diffusion front thereby triggering the microseismic events farthest from the injection domain at any given time during fluid injection. We use the crack tip propagation to explain the triggering front observed in distance versus time plots of published microseismic data examples from hydraulic fracturing treatments of low-permeability hydrocarbon reservoirs. We conclude that attributing the location of the microseismic triggering front purely to pore pressure diffusion from the injection point may lead to incorrect estimates of the hydraulic diffusivity by multiple orders of magnitude for low-permeability formations. Moreover, the opening of the fracture cavity creates stress shadow zones perpendicular to the principal fracture walls in which microseismic triggering due to the elastic stress perturbations is suppressed. Microseismic triggering in this stress shadow region may be attributed mainly to pore pressure diffusion. We use the width, instead of the longest size, of the microseismic cloud to obtain an enhanced diffusivity measure, which may be useful for subsequent production simulations.


1981 ◽  
Vol 21 (01) ◽  
pp. 43-50 ◽  
Author(s):  
Thomas Lindsay Blanton

Abstract Compression tests with and without pore pressure have been run on Danian and Austin chalks. The rocks yielded under increasing hydrostatic stress by pore collapse. The same effect was produced by holding a constant hydrostatic stress and reducing the pore pressure. This pore collapse reduced the permeability. The ultimate strength of the chalks increased with increasing confining pressure. The yield strength increased initially, but at higher confining pressures it decreased until it yielded under hydrostatic stress. Relatively high pore-pressure gradients developed when the chalks. were compressed. In these situations, the mechanical behavior tended to be a function of the average effective stresses. Introduction Hydrocarbons have been found in chalks in the North Sea, the Middle East, the Gulf Coast and midcontinent regions of the U.S., and the Scotian Shelf of Canada1; however, problems have been encountered in developing these reservoirs efficiently because of the unusual mechanical behavior of chalk. Chalks have three characteristics that interact to differentiate their behavior from most reservoir rocks. High Porosity. Porosities may be as high as 80070.1,2 Effects of burial and pore-water chemistry can reduce this porosity to less than 1%, but notable exceptions occur in areas of early oil placement and overpressuring where porosities in excess of 40% have been reported.2,3 Low Permeability Regardless of porosity, chalks have low permeabilities, usually around 1 to 10 md. Soft Matrix. Chalks are predominantly calcite, which has a hardness of 3 on Mohr's scale. These properties create problems in the following areas of reservoir development. Drilling. High porosity combined with a soft matrix material makes for a relatively weak and ductile rock. Efficient drilling involves chipping the rock and ductile behavior inhibits this process. Stimulation. The combination of high porosity and low permeability makes chalks prime candidates for stimulation by hydraulic fracturing or acid fracturing. The best production often is associated with natural fractures.2,3 Man-made fractures could open up new areas to production, but again ductile behavior inhibits the fracturing process. Production. In many cases permeabilities are low enough to trap pore fluids and cause abnormally high pore pressures.2 These high pore pressures help maintain the high porosities at depth by supporting some of the weight of the overburden. As the field is produced and the pore pressure lowered, some of the weight will shift to the soft matrix. The result may be pore collapse and reduction of an already low permeability. These problems indicate a need for basic information on the mechanical behavior of chalks. Determining methods of enhancing brittle behavior could lead to improved drilling and stimulation techniques. The ability to predict and prevent pore collapse could increase ultimate recovery. The approach taken in this study was experimental. Specimens of chalk were subjected to different combinations of stress and pore pressure in the laboratory, and the resulting deformations were measured.


SPE Journal ◽  
2013 ◽  
Vol 19 (03) ◽  
pp. 443-462 ◽  
Author(s):  
Sahar Ghannadi ◽  
Mazda Irani ◽  
Rick Chalaturnyk

Summary Inductive methods, such as electromagnetic steam-assisted gravity drainage (EM-SAGD), have been identified as technically and economically feasible recovery methods for shallow oil-sands reservoirs with overburdens of more than 30 m (Koolman et al. 2008). However, in EM-SAGD projects, the caprock overlying oil-sands reservoirs is also electromagnetically heated along with the bitumen reservoir. Because permeability is low in Alberta thermal-project caprock formations (i.e., the Clearwater shale formation in the Athabasca deposit and the Colorado shale formation in the Cold Lake deposit), the pore pressure resulting from the thermal expansion of pore fluids may not be balanced with the fluid loss caused by flow and the fluid-volume changes resulting from pore dilation. In extreme cases, the water boils, and the pore pressure increases dramatically as a result of the phase change in the water, which causes profound effective-stress reduction. After this condition is established, pore pressure increases can lead to shear failure of the caprock, the creation of microcracks and hydraulic fractures, and subsequent caprock integrity failure. It is typically believed that low-permeability caprocks impede the transmission of pore pressure from the reservoir, making them more resistant to shear failure (Collins 2005, 2007). In cases of induced thermal pressurization, low-permeability caprocks are not always more resistant. In this study, analytical solutions are obtained for temperature and pore-pressure rises caused by the constant EM heating rate of the caprock. These analytical solutions show that pore-pressure increases from EM heating depend on the permeability and compressibility of the caprock formation. For stiff or low-compressibility media, thermal pressurization can cause fluid pressures to approach hydrostatic pressure, and shear strength to approach zero for low-cohesive-strength units of the caprock (units of the caprock with high silt and sand percentage) and sections of the caprock with pre-existing fractures with no cohesion.


Geofluids ◽  
2015 ◽  
Vol 16 (2) ◽  
pp. 231-248 ◽  
Author(s):  
A. Eckert ◽  
X. Liu ◽  
P. Connolly

Sign in / Sign up

Export Citation Format

Share Document