Evaluation of Induced Thermal Pressurization in Clearwater Shale Caprock in Electromagnetic Steam-Assisted Gravity-Drainage Projects

SPE Journal ◽  
2013 ◽  
Vol 19 (03) ◽  
pp. 443-462 ◽  
Author(s):  
Sahar Ghannadi ◽  
Mazda Irani ◽  
Rick Chalaturnyk

Summary Inductive methods, such as electromagnetic steam-assisted gravity drainage (EM-SAGD), have been identified as technically and economically feasible recovery methods for shallow oil-sands reservoirs with overburdens of more than 30 m (Koolman et al. 2008). However, in EM-SAGD projects, the caprock overlying oil-sands reservoirs is also electromagnetically heated along with the bitumen reservoir. Because permeability is low in Alberta thermal-project caprock formations (i.e., the Clearwater shale formation in the Athabasca deposit and the Colorado shale formation in the Cold Lake deposit), the pore pressure resulting from the thermal expansion of pore fluids may not be balanced with the fluid loss caused by flow and the fluid-volume changes resulting from pore dilation. In extreme cases, the water boils, and the pore pressure increases dramatically as a result of the phase change in the water, which causes profound effective-stress reduction. After this condition is established, pore pressure increases can lead to shear failure of the caprock, the creation of microcracks and hydraulic fractures, and subsequent caprock integrity failure. It is typically believed that low-permeability caprocks impede the transmission of pore pressure from the reservoir, making them more resistant to shear failure (Collins 2005, 2007). In cases of induced thermal pressurization, low-permeability caprocks are not always more resistant. In this study, analytical solutions are obtained for temperature and pore-pressure rises caused by the constant EM heating rate of the caprock. These analytical solutions show that pore-pressure increases from EM heating depend on the permeability and compressibility of the caprock formation. For stiff or low-compressibility media, thermal pressurization can cause fluid pressures to approach hydrostatic pressure, and shear strength to approach zero for low-cohesive-strength units of the caprock (units of the caprock with high silt and sand percentage) and sections of the caprock with pre-existing fractures with no cohesion.

SPE Journal ◽  
2014 ◽  
Vol 19 (06) ◽  
pp. 1126-1150 ◽  
Author(s):  
Sahar Ghannadi ◽  
Mazda Irani ◽  
Rick Chalaturnyk

Summary Steam-assisted gravity drainage (SAGD) is one successful thermal-recovery technique applied in Alberta oil-sand reservoirs. When considering in-situ production from bitumen reservoirs, one must reduce viscosity for the bitumen to flow toward the production well. Steam injection is currently the most promising thermal-recovery method. Although steamflooding has proved to be a commercially viable way to extract bitumen from bitumen reservoirs, caprock integrity and the risk of losing steam containment can be challenging operational problems. Because permeability is low in Albertan thermal-project caprock formations, heating greatly increases the pressure on any water trapped in pores as a result of water thermal expansion. This water also sees a great increase in volume as it flashes to steam, causing a large effective-stress reduction. After this condition is established, pore-pressure increases can lead to caprock shear failure or tensile fracturing, and to subsequent caprock-integrity failure or potential casing failure. It is typically believed that low-permeability caprocks impede the transmission of pore pressure from reservoirs, making them more resistant to shear failure (Collins 2005, 2007). In considering the “thermo-hydromechanical pressurization” physics, low-permeability caprocks are not always more resistant. As the steam chamber rises into the caprock, the heated pore fluids may flash to steam. Consequently, there is a vapor region between the steam-chamber interface penetrated into the caprock and the water region within the caprock which is still at a subcritical state. This study develops equations for fluid-mass and thermal-energy conservation, evaluating the thermo-hydromechanical pressurization in low-permeability caprocks and the flow of steam and water after steam starts to be injected as part of the SAGD process. Calculations are made for both short-term and long-term responses, and evaluated thermal pressurization is compared for caprocks with different stiffness states and with different permeabilities. One can conclude that the stiffer and less permeable the caprock, the greater the thermo-hydromechanical pressurization; and that the application of SAGD can lead to high pore pressure and potentially to caprock shear, and to subsequent steam release to the surface or potential casing failure.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 427
Author(s):  
Jingyi Wang ◽  
Ian Gates

To extract viscous bitumen from oil sands reservoirs, steam is injected into the formation to lower the bitumen’s viscosity enabling sufficient mobility for its production to the surface. Steam-assisted gravity drainage (SAGD) is the preferred process for Athabasca oil sands reservoirs but its performance suffers in heterogeneous reservoirs leading to an elevated steam-to-oil ratio (SOR) above that which would be observed in a clean oil sands reservoir. This implies that the SOR could be used as a signature to understand the nature of heterogeneities or other features in reservoirs. In the research reported here, the use of the SOR as a signal to provide information on the heterogeneity of the reservoir is explored. The analysis conducted on prototypical reservoirs reveals that the instantaneous SOR (iSOR) can be used to identify reservoir features. The results show that the iSOR profile exhibits specific signatures that can be used to identify when the steam chamber reaches the top of the formation, a lean zone, a top gas zone, and shale layers.


2010 ◽  
Author(s):  
Weiqiang Li ◽  
Daulat D. Mamora

Abstract Steam Assisted Gravity Drainage (SAGD) is one successful thermal recovery technique applied in the Athabasca oil sands in Canada to produce the very viscous bitumen. Water for SAGD is limited in supply and expensive to treat and to generate steam. Consequently, we conducted a study into injecting high-temperature solvent instead of steam to recover Athabasca oil. In this study, hexane (C6) coinjection at condensing condition is simulated using CMG STARS to analyze the drainage mechanism inside the vapor-solvent chamber. The production performance is compared with an equivalent steam injection case based on the same Athabasca reservoir condition. Simulation results show that C6 is vaporized and transported into the vapor-solvent chamber. At the condensing condition, high temperature C6 reduces the viscosity of the bitumen more efficiently than steam and can displace out all the original oil. The oil production rate with C6 injection is about 1.5 to 2 times that of steam injection with oil recovery factor of about 100% oil initially-in-place. Most of the injected C6 can be recycled from the reservoir and from the produced oil, thus significantly reduce the solvent cost. Results of our study indicate that high-temperature solvent injection appears feasible although further technical and economic evaluation of the process is required.


SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 477-491 ◽  
Author(s):  
Enrique Gallardo ◽  
Clayton V. Deutsch

Summary Steam-assisted gravity drainage (SAGD) is a thermal-recovery process to produce bitumen from oil sands. In this technology, steam injected in the reservoir creates a constantly evolving steam chamber while heated bitumen drains to a production well. Understanding the geometry and the rate of growth of the steam chamber is necessary to manage an economically successful SAGD project. This work introduces an approximate physics-discrete simulator (APDS) to model the steam-chamber evolution. The algorithm is formulated and implemented using graph theory, simplified porous-media flow equations, heat-transfer concepts, and ideas from discrete simulation. The APDS predicts the steam-chamber evolution in heterogeneous reservoirs and is computationally efficient enough to be applied over multiple geostatistical realizations to support decisions in the presence of geological uncertainty. The APDS is expected to be useful for selecting well-pair locations and operational strategies, 4D-seismic integration in SAGD-reservoir characterization, and caprock-integrity assessment.


SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1721-1742 ◽  
Author(s):  
Mazda Irani ◽  
Ian Gates

Summary Li et al. (2004) described three zones at the edge of steam chambers on the basis of drainage conditions: drained, partially drained, and undrained. In the drained zone, the pore pressure is controlled by injection pressure, and fluid mobility within this region is sufficient to drain additional pore pressures because of shear dilation and pore-fluid thermal expansion. The undrained zone lies beyond the partially drained zone and extends to virgin reservoir far beyond the chamber. In this zone shearing behaves under undrained conditions; by this, Li et al. (2004) mean no volume change occurs but shear lead to changes in pore pressure. Li et al. (2004) proposed that the boundaries of these zones are dependent on bitumen viscosity, which relates to the temperature distribution beyond the steam interface. Because drained/undrained conditions affect the geomechanics at the edge of the chamber, we investigate whether the assumption of Li et al. (2004) that there is no volume change within the sheared zone is correct and is supported by field data. Here, we establish the physics associated with the undrained zone at the edge of steam-assisted gravity-drainage steam chamber and explore the pressure front vs. temperature front of different oil-sand field projects. The results reveal that the drained zone governed by pressure-front advancement is greater in extent than the sheared zone. The thermodynamics of the undrained zone are discussed to derive a new theory for mechanothermal phenomena at the edge of the chamber. The results from the theory show that the drained zone extends beyond the temperature front and thus, from a geomechanical point of view, the system solely consists of the drained and partially drained zones.


Sign in / Sign up

Export Citation Format

Share Document