scholarly journals Alteration of ultrasonic signatures by stress-induced changes in hydro-mechanical properties of fractured rocks

Author(s):  
Arash Kamali-Asl ◽  
Bijay KC ◽  
Ehsan Ghazanfari ◽  
Ismael Himar Falcon-Suarez
1999 ◽  
Vol 40 (7) ◽  
pp. 743-749 ◽  
Author(s):  
T. Taguchi ◽  
A. Uraguchi ◽  
M. Katsumi

2015 ◽  
Vol 137 (1) ◽  
Author(s):  
David P. Fyhrie ◽  
Roger Zauel

There are many methods used to estimate the undamaged effective (apparent) moduli of cancellous bone as a function of bone volume fraction (BV/TV), mean intercept length (MIL), and other image based average microstructural measures. The MIL and BV/TV are both only functions of the cancellous microstructure and, therefore, cannot directly account for damage induced changes in the intrinsic trabecular hard tissue mechanical properties. Using a nonlinear finite element (FE) approximation for the degradation of effective modulus as a function of applied effective compressive strain, we demonstrate that a measurement of the directional tortuosity of undamaged trabecular hard tissue strongly predicts directional effective modulus (r2 > 0.90) and directional effective modulus degradation (r2 > 0.65). This novel measure of cancellous bone directional tortuosity has the potential for development into an anisotropic approach for calculating effective mechanical properties as a function of trabecular level material damage applicable to understanding how tissue microstructure and intrinsic hard tissue moduli interact to determine cancellous bone quality.


Author(s):  
Ryan W. Kobs ◽  
Nidal E. Muvarak ◽  
Naomi C. Chesler

Hypobaric hypoxia produces pulmonary hypertension in mice which causes pulmonary vascular remodeling. To study the biomechanics of this process, mice were exposed to hypoxia for 0-(control), 10-, and 15-days. Using a pressurized arteriograph system, mechanical properties of the main pulmonary artery were measured and compared to the biological changes in the vessel wall measured histologically. 10- and 15-day hypoxic vessels were significantly stiffer when compared to 0-day vessels. This stiffness correlated with greater elastin and collagen content in the vessel wall.


Author(s):  
Tarek Shazly ◽  
Alexander Rachev

Arterial remodeling in response to sustained alterations in blood pressure and/or flow induces changes in vessel geometry, structure, and composition. In conditions of hypertension and elevated blood flow, remodeling results in increased vessel mass that is distributed in a manner to maintain the local mechanical environment of the vascular cells at a baseline state. A majority of theoretical studies on remodeling have assumed that new mass is formed via a proportional production of load-bearing constituents, namely elastin, collagen, and smooth muscle. Therefore, when the vascular tissue is considered as a constrained mixture of these structural components, their mass fractions do not change as a result of remodeling. However, increased arterial mass is primarily attributed to smooth muscle cell hypertrophy and upregulated collagen production, implying a change in the mass fractions of all constituents and therefore the tissue mechanical properties [1]. Moreover, few papers account for remodeling-induced changes in the configuration and/or orientation of collagen fibers, both of which may also alter tissue mechanical properties. The objective of this study is to build a mathematical model that enables evaluation of the effects of mass redistribution among structural components and changes in collagen fiber configuration on the geometrical outputs of arterial remodeling.


1990 ◽  
Vol 122 (4) ◽  
pp. 525-529 ◽  
Author(s):  
E. BERARDESCA ◽  
P. GABBA ◽  
N. FARINELLI ◽  
G. BORRONI ◽  
G. RABBIOSI

Sign in / Sign up

Export Citation Format

Share Document