Tolerance of Pyramidal Tract to Gamma Knife Radiosurgery Based on Diffusion-Tensor Tractography

2008 ◽  
Vol 70 (5) ◽  
pp. 1330-1335 ◽  
Author(s):  
Keisuke Maruyama ◽  
Kyousuke Kamada ◽  
Takahiro Ota ◽  
Tomoyuki Koga ◽  
Daisuke Itoh ◽  
...  
2020 ◽  
Vol 133 (3) ◽  
pp. 727-735
Author(s):  
Peter Shih-Ping Hung ◽  
Sarasa Tohyama ◽  
Jia Y. Zhang ◽  
Mojgan Hodaie

OBJECTIVEGamma Knife radiosurgery (GKRS) is a noninvasive surgical treatment option for patients with medically refractive classic trigeminal neuralgia (TN). The long-term microstructural consequences of radiosurgery and their association with pain relief remain unclear. To better understand this topic, the authors used diffusion tensor imaging (DTI) to characterize the effects of GKRS on trigeminal nerve microstructure over multiple posttreatment time points.METHODSNinety-two sets of 3-T anatomical and diffusion-weighted MR images from 55 patients with TN treated by GKRS were divided within 6-, 12-, and 24-month posttreatment time points into responder and nonresponder subgroups (≥ 75% and < 75% reduction in posttreatment pain intensity, respectively). Within each subgroup, posttreatment pain intensity was then assessed against pretreatment levels and followed by DTI metric analyses, contrasting treated and contralateral control nerves to identify specific biomarkers of successful pain relief.RESULTSGKRS resulted in successful pain relief that was accompanied by asynchronous reductions in fractional anisotropy (FA), which maximized 24 months after treatment. While GKRS responders demonstrated significantly reduced FA within the radiosurgery target 12 and 24 months posttreatment (p < 0.05 and p < 0.01, respectively), nonresponders had statistically indistinguishable DTI metrics between nerve types at each time point.CONCLUSIONSUltimately, this study serves as the first step toward an improved understanding of the long-term microstructural effect of radiosurgery on TN. Given that FA reductions remained specific to responders and were absent in nonresponders up to 24 months posttreatment, FA changes have the potential of serving as temporally consistent biomarkers of optimal pain relief following radiosurgical treatment for classic TN.


2018 ◽  
Vol 133 ◽  
pp. 58-63 ◽  
Author(s):  
Yusuke Fukui ◽  
Nozomi Hishikawa ◽  
Kota Sato ◽  
Yumiko Nakano ◽  
Ryuta Morihara ◽  
...  

2008 ◽  
Vol 18 (3) ◽  
pp. 282-287 ◽  
Author(s):  
Yoon-Ho Hong ◽  
Jung-Joon Sung ◽  
Sung-Min Kim ◽  
Kyung-Seok Park ◽  
Kwang-Woo Lee ◽  
...  

2016 ◽  
Vol 125 (Supplement_1) ◽  
pp. 129-138 ◽  
Author(s):  
João Gabriel Ribeiro Gomes ◽  
Alessandra Augusta Gorgulho ◽  
Amanda de Oliveira López ◽  
Crystian Wilian Chagas Saraiva ◽  
Lucas Petri Damiani ◽  
...  

OBJECTIVEThe role of tractography in Gamma Knife thalamotomy (GK-T) planning is still unclear. Pyramidal tractography might reduce the risk of radiation injury to the pyramidal tract and reduce motor complications.METHODSIn this study, the ventralis intermedius nucleus (VIM) targets of 20 patients were bilaterally defined using Iplannet Stereotaxy Software, according to the anterior commissure–posterior commissure (AC-PC) line and considering the localization of the pyramidal tract. The 40 targets and tractography were transferred as objects to the GammaPlan Treatment Planning System (GP-TPS). New targets were defined, according to the AC-PC line in the functional targets section of the GP-TPS. The target offsets required to maintain the internal capsule (IC) constraint of < 15 Gy were evaluated. In addition, the strategies available in GP-TPS to maintain the minimum conventional VIM target dose at > 100 Gy were determined.RESULTSA difference was observed between the positions of both targets and the doses to the IC. The lateral (x) and the vertical (z) coordinates were adjusted 1.9 mm medially and 1.3 mm cranially, respectively. The targets defined considering the position of the pyramidal tract were more medial and superior, based on the constraint of 15 Gy touching the object representing the IC in the GP-TPS. The best strategy to meet the set constraints was 90° Gamma angle (GA) with automatic shaping of dose distribution; this was followed by 110° GA. The worst GA was 70°. Treatment time was substantially increased by the shaping strategy, approximately doubling delivery time.CONCLUSIONSRoutine use of DTI pyramidal tractography might be important to fine-tune GK-T planning. DTI tractography, as well as anisotropy showing the VIM, promises to improve Gamma Knife functional procedures. They allow for a more objective definition of dose constraints to the IC and targeting. DTI pyramidal tractography introduced into the treatment planning may reduce the incidence of motor complications and improve efficacy. This needs to be validated in a large clinical series.


2016 ◽  
Vol 43 (6Part10) ◽  
pp. 3427-3428
Author(s):  
H Speckter ◽  
J Bido ◽  
G Hernandez ◽  
L Suazo ◽  
D Rivera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document