scholarly journals Commissioning of a New Compact Accelerator System Designed for the Treatment of Superficial Lesions

Author(s):  
R. Young ◽  
K.W. Brooks ◽  
S. Adamczyk
Keyword(s):  
Author(s):  
L. Faillace ◽  
S. Barone ◽  
G. Battistoni ◽  
M. Di Francesco ◽  
G. Felici ◽  
...  

Author(s):  
Lewei Zhao ◽  
Gang Liu ◽  
Weili Zheng ◽  
Jiajian Shen ◽  
Andrew Lee ◽  
...  

Abstract Objective: We proposed an experimental approach to build a precise machine-specific beam delivery time (BDT) prediction and delivery sequence model for standard, volumetric, and layer repainting delivery based on a cyclotron accelerator system. Approach Test fields and clinical treatment plans’ log files were used to experimentally derive three main beam delivery parameters that impacted BDT: energy layer switching time (ELST), spot switching time (SSWT), and spot drill time (SDT). This derived machine-specific model includes standard, volumetric, and layer repainting delivery sequences. A total of 103 clinical treatment fields were used to validate the model. Main results: The study found that ELST is not stochastic in this specific machine. Instead, it is actually the data transmission time or energy selection time, whichever takes longer. The validation showed that the accuracy of each component of the BDT matches well between machine log files and the model’s prediction. The average total BDT was about (-0.74±3.33)% difference compared to the actual treatment log files, which is improved from the current commercial proton therapy system’s prediction (67.22%±26.19%). Significance: An accurate BDT prediction and delivery sequence model was established for an cyclotron-based proton therapy system IBA ProteusPLUS®. Most institutions could adopt this method to build a machine-specific model for their own proton system.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 163-167 ◽  
Author(s):  
J C Kim ◽  
J H Park ◽  
I C Kim ◽  
C Lee ◽  
M K Cheoun ◽  
...  

The accelerator mass spectrometry facility at the Seoul National University (SNU-AMS) was completed in December 1998 and a report was presented at the Vienna AMS conference in September 1999. At the conference, we described the basic components of our accelerator system and reported the results of the performance test. Since then, extensive testing of the accuracy and reproducibility of the system has been carried out, and about 200 unknown samples have been measured so far. We obtained a precision of 4‰ for modern samples, and an accuracy of approximately 40 yr was demonstrated by analyzing samples that were previously dated with a conventional technique and by other AMS laboratories. We present these results here, together with detailed descriptions of our data-taking and analysis procedures.


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 311-323 ◽  
Author(s):  
Walter Kutschera ◽  
Irshad Ahmad ◽  
P J Billquist ◽  
B G Glagola ◽  
Karen Furer ◽  
...  

We made preliminary AMS measurements of 41Ca/Ca ratios in bone and limestone specimens with the Argonne Tandem-Linac Accelerator System (ATLAS). We were able to avoid pre-enrichment of 41Ca used in previous experiments due to a substantial increase in Ca-beam intensity. Most of the measured ratios lie in the 10-14 range, with a few values below 10-14. In general, these values are higher than the ones observed by the AMS group at the University of Pennsylvania. We discuss possible implications of these results. We also present the current status of half-life measurements of 41Ca and discuss 41Ca production processes on earth.


Sign in / Sign up

Export Citation Format

Share Document