scholarly journals Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method

2008 ◽  
Vol 45 (11-12) ◽  
pp. 3494-3506 ◽  
Author(s):  
Yasser M. Shabana ◽  
Naotake Noda
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
S. Natarajan ◽  
A. J. M. Ferreira ◽  
S. Bordas ◽  
E. Carrera ◽  
M. Cinefra ◽  
...  

A cell-based smoothed finite element method with discrete shear gap technique is employed to study the static bending, free vibration, and mechanical and thermal buckling behaviour of functionally graded material (FGM) plates. The plate kinematics is based on the first-order shear deformation theory and the shear locking is suppressed by the discrete shear gap method. The shear correction factors are evaluated by employing the energy equivalence principle. The material property is assumed to be temperature dependent and graded only in the thickness direction. The effective properties are computed by using the Mori-Tanaka homogenization method. The accuracy of the present formulation is validated against available solutions. A systematic parametric study is carried out to examine the influence of the gradient index, the plate aspect ratio, skewness of the plate, and the boundary conditions on the global response of the FGM plates. The effect of a centrally located circular cutout on the global response is also studied.


2013 ◽  
Vol 560 ◽  
pp. 157-180 ◽  
Author(s):  
Ahmad Akbari Rahimabadi ◽  
Sundararajan Natarajan ◽  
Stephane Pa Bordas

In this paper, the effect of a centrally located cutout (circular and elliptical) and cracksemanating from the cutout on the free flexural vibration behaviour of functionally graded materialplates in thermal environment is studied. The discontinuity surface is represented independent of themesh by exploiting the partition of unity method framework. A Heaviside function is used to capturethe jump in the displacement across the discontinuity surface and asymptotic branch functions areused to capture the singularity around the crack tip. An enriched shear flexible 4-noded quadrilateralelement is used for the spatial discretization. The properties are assumed to vary only in the thicknessdirection. The effective properties of the functionally graded material are estimated using the Mori-Tanaka homogenization scheme and the plate kinematics is based on the first order shear deformationtheory. The influence of the plate geometry, the geometry of the cutout, the crack length, the thermalgradient and the boundary conditions on the free flexural vibration is numerically studied.


2013 ◽  
Vol 199 ◽  
pp. 593-598 ◽  
Author(s):  
Danuta Miedzińska ◽  
Robert Panowicz ◽  
Przemysław Jóźwicki

The paper deals with the numerical and experimental analyses of functionally graded material structures which are represented by a surface layer of the steel sample hardened during the laser treatment process. A functionally graded parameter of the researched structure was assumed as the hardness value experimentally measured with the use of a Vickers hardness test method. The microstructure of the tested layer was also analyzed for the Vickers test verification. Two homogenization methods were used for the purpose of layer substitute properties for numerical calculations. The first one was to divide the FGM domain into a number of layers in the direction of material gradation and then apply a numerical homogenization method within each layer. The resulting material model describes the FGM as a composite of homogeneous layers. The second method was based on the Mori-Tanaka homogenization theory and was carried out with the use of Digimat software, which is the nonlinear multi-scale materials and structures modelling platform. Both methods were compared and showed good correspondence.


2016 ◽  
Vol 58 (3) ◽  
pp. 260-268 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Noha Fouda

Sign in / Sign up

Export Citation Format

Share Document