scholarly journals Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method

2014 ◽  
Vol 51 (11-12) ◽  
pp. 2167-2182 ◽  
Author(s):  
Peng Liu ◽  
Tiantang Yu ◽  
Tinh Quoc Bui ◽  
Chuanzeng Zhang ◽  
Yepeng Xu ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Bin Cai ◽  
Liming Zhou

To accurately simulate the continuous property change of functionally graded piezoelectric materials (FGPMs) and overcome the overstiffness of the finite element method (FEM), we present an electromechanical inhomogeneous cell-based smoothed FEM (ISFEM) of FGPMs. Firstly, ISFEM formulations were derived to calculate the transient response of FGPMs, and then, a modified Wilson-θ method was deduced to solve the integration of the FGPM system. The true parameters at the Gaussian integration point in FGPMs were adopted directly to replace the homogenization parameters in an element. ISFEM provides a close-to-exact stiffness of the continuous system, which could automatically and more easily generate for complicated domains and thus significantly decrease numerical errors. The accuracy and trustworthiness of ISFEM were verified as higher than the standard FEM by several numerical examples.


2017 ◽  
Vol 20 (K3) ◽  
pp. 119-125
Author(s):  
Bang Kim Tran ◽  
Huy The Tran ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

Functionally graded material is of great importance in many engineering problems. Here the effect of multiple random inclusions in functionally graded material (FGM) is investigated in this paper. Since the geometry of entire model becomes complicated when many inclusions with different sizes appearing in the body, a methodology to model those inclusions without meshing the internal boundaries is proposed. The numerical method couples the level set method to the extended finite-element method (X-FEM). In the X-FEM, the finite-element approximation is enriched by additional functions through the notion of partition of unity. The level set method is used for representing the location of random inclusions. Numerical examples are presented to demonstrate the accuracy and potential of this technique. The obtained results are compared with available refered results and COMSOL, the finite element method software.


Sign in / Sign up

Export Citation Format

Share Document