Improved effectiveness of a cryogenic counter-current parallel flow - Three fluid heat exchanger with three thermal communication due to Joule Thomson pressure drop

2022 ◽  
Vol 172 ◽  
pp. 107267
Author(s):  
Vishnudas Alias Vipul L. Chodankar ◽  
Aswatha ◽  
K.N. Seetharamu
2020 ◽  
Author(s):  
Harpreet Kaur Aasi ◽  
Manish Mishra

Abstract Three-fluid compact heat exchanger of plate-fin type with parallel-flow configuration is optimised for the entropy generation. Four different types of plate fins (plain rectangular, offset strip, corrugated louvered and wavy fin) are embodied within heat exchanger for both co-current and counter-current flow arrangements have been selected for the study. Genetic algorithm is selected as an optimisation tool having apt in handling various continuous variables and discrete variables and the problems with complexities in the objective function as well as in constraints. Validation of the optimization model is carried out by comparing the results with that from experimental results, Particle swarm optimization (without heat duty constraint) and from graphical method (with heat duty constraint). It is observed that for a specified heat duty and given operating conditions corrugated louvered fin with counter-current flow arrangement offers the minimum entropy generation amongst all.


2008 ◽  
Author(s):  
Yang Chen ◽  
Per Lundqvist ◽  
Bjo¨rn Palm

In the current study, a novel gas water heat exchanger with minichannels is designed, built and tested. The heat exchanger is mainly composed of a number of concentric ring shaped plates, which are made up of several heat exchanger tubes. The ring shaped plates are arranged in parallel and placed in a shell. The heat exchanger is designed as a counter current heat exchanger with laminar flow on the heat exchanger’s shell-side (gas side) and therefore has a very low pressure drop on the shell side. The heat exchanger was tested with water and hot air on its tube-side and shell-side respectively. All the necessary parameters like inlet and outlet temperatures on tube-side and shell-side as well as the pressure drop, flow rate of fluids, etc. were measured. Different existing correlations were used to calculate the overall heat transfer coefficient and the results were compared with the measured value. The measured results show that the new designed heat exchanger can achieve a good heat transfer performance and also maintain a low pressure drop on shell-side (gas side).


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6330
Author(s):  
Byunghui Kim ◽  
Kuisoon Kim ◽  
Seokho Kim

Parallel flow heat exchangers with manifolds are widely used in various industries owing to their compact size and ease of application. Research has been conducted to understand their flow characteristics and improve flow distribution and pressure drop performance; however, it is difficult to derive generalized improvements under different conditions for each application. This study proposes a novel design to improve the flow characteristics of a compact heat exchanger with a sudden expansion area of a dividing manifold and uses computational fluid dynamics simulation to verify it. The abrupt cross-sectional area change in the dividing manifold induces a jet flow near the entry region, which causes the flow maldistribution of the first few parallel tubes. To improve the efficiency of the dividing manifold, simple and novel designs with a converging-diverging area in the manifold header have been proposed. Parametric studies on the novel designs show improvements of up to 37.5% and 52.0% flow uniformity and 2.65% and 0.74% pressure drop performance for U- and Z-types, respectively, compared to the base model. Thus, the simple and easily fabricated quadrilateral shape can improve the flow maldistribution and pressure drop caused by a dividing manifold with a sudden area expansion.


Sign in / Sign up

Export Citation Format

Share Document