Investigating two-dimensional mechanical and thermal behavior of skin tissue in confronting with various laser irradiation

2022 ◽  
Vol 172 ◽  
pp. 107366
Author(s):  
Mina Ghanbari ◽  
Ghader Rezazadeh
2009 ◽  
Vol 7 (6) ◽  
pp. 512-514 ◽  
Author(s):  
黄义梅 Wei Gong ◽  
龚玮 Yimei Huang ◽  
谢树森 Shusen Xie

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Magdy A. Ezzat ◽  
Roland W. Lewis

Purpose The system of equations for fractional thermo-viscoelasticity is used to investigate two-dimensional bioheat transfer and heat-induced mechanical response in human skin tissue with rheological properties. Design/methodology/approach Laplace and Fourier’s transformations are used. The resulting formulation is applied to human skin tissue subjected to regional hyperthermia therapy for cancer treatment. The inversion process for Fourier and Laplace transforms is carried out using a numerical method based on Fourier series expansions. Findings Comparisons are made with the results anticipated through the coupled and generalized theories. The influences of volume materials properties and fractional order parameters for all the regarded fields are examined. The results indicate that volume relaxation parameters, as well as fractional order parameters, play a major role in all considered distributions. Originality/value Bio-thermo-mechanics includes bioheat transfer, biomechanics, burn injury and physiology. In clinical applications, knowledge of bio-thermo-mechanics in living tissues is very important. One can infer from the numerical results that, with a finite distance, the thermo-mechanical waves spread to skin tissue, removing the unrealistic predictions of the Pennes’ model.


RSC Advances ◽  
2016 ◽  
Vol 6 (113) ◽  
pp. 112103-112108 ◽  
Author(s):  
Sachin R. Suryawanshi ◽  
Mahendra A. More ◽  
Dattatray J. Late

Highly crystalline two dimensional (2D) few layered black phosphorus (BP) nanosheets have been synthesized via a one step facile laser irradiation technique under optimized experimental conditions. The BP material shows promising field emission performance.


Author(s):  
Jaideep Dutta ◽  
Balaram Kundu

The formation of the present work is based on the development of the exact analytical solution of two-dimensional temperature response by employing the hyperbolic heat conduction bioheat model in a single-layered human skin tissue subjected to the regional hyperthermia therapy (RHT) for cancer treatment. The mathematical approach has been utilized as a hybrid form of ‘separation of variables’ and ‘finite integral transform’ method. Three kinds of surface heat fluxes (constant, sinusoidal and cosine) have been employed as an external heat source on the therapeutic surface of the square-shaped skin tissue of 100 mm × 100 mm. An innovative form of initial condition (spatially dependent) has been implemented in the present mathematical formulation as skin tissues are highly non-homogeneous and non-uniform in structure. The present research outcome indicates that cosine heat flux would be a suitable alternative for the sinusoidal heat flux. The impact of the relaxation time lag has been clearly noted in the thermal response with the waveform-like behaviour and it justifies the postulate of hyperbolic heat conduction. The two-dimensional temperature of the skin tissue has been observed in the range of 48.1 ℃–40 ℃ (in decreasing order). Estimated peak temperatures are in the proposed spectrum of hyperthermia therapy for an exposure time of 100 s, and this fact is true in an agreement with the medical protocol of the cancer treatment. The accuracy of the mathematical modelling and in-house computer codes are justified with the published numerical models and the maximum deviation of the thermal response has been noticed in order of 1.5–3%. The two-dimensional surface thermal contours have provided a glimpse of heat flow in the physical domain of skin tissue under different heating conditions and this research output may be beneficial to establish the theoretical standard of the regional hyperthermia treatment for cancer eradication.


Sign in / Sign up

Export Citation Format

Share Document