scholarly journals Optimal control analysis of a COVID-19 and tuberculosis co-dynamics model

2022 ◽  
pp. 100849
Author(s):  
M.S. Goudiaby ◽  
L.D. Gning ◽  
M.L. Diagne ◽  
Ben M. Dia ◽  
H. Rwezaura ◽  
...  
2021 ◽  
Vol 60 (3) ◽  
pp. 2875-2884
Author(s):  
Muhammad Zamir ◽  
Thabet Abdeljawad ◽  
Fawad Nadeem ◽  
Abdul Wahid ◽  
Ali Yousef

2020 ◽  
Vol 19 (4) ◽  
pp. 123-132 ◽  
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Federico Martin Serra

In this paper it is presented the design of a controller for a reaction wheel pendulum using a discrete-time representation via optimal control from the point of view of passivity-based control analysis. The main advantage of the proposed approach is that it allows to guarantee asymptotic stability convergence using a quadratic candidate Lyapunovfunction. Numerical simulations show that the proposed inverse optimal control design permits to reach superiornumerical performance reported by continuous approaches such as Lyapunov control functions and interconnection,and damping assignment passivity-based controllers. An additional advantageof the proposed inverse optimal controlmethod is its easy implementation since it does not employ additional states. It is only required a basic discretizationof the time-domain dynamical model based on the backward representation. All the simulations are carried out inMATLAB/OCTAVE software using a codification on the script environment.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Chernet Tuge Deressa ◽  
Gemechis File Duressa

AbstractWe consider a SEAIR epidemic model with Atangana–Baleanu fractional-order derivative. We approximate the solution of the model using the numerical scheme developed by Toufic and Atangana. The numerical simulation corresponding to several fractional orders shows that, as the fractional order reduces from 1, the spread of the endemic grows slower. Optimal control analysis and simulation show that the control strategy designed is operative in reducing the number of cases in different compartments. Moreover, simulating the optimal profile revealed that reducing the fractional-order from 1 leads to the need for quick starting of the application of the designed control strategy at the maximum possible level and maintaining it for the majority of the period of the pandemic.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 971
Author(s):  
Mlyashimbi Helikumi ◽  
Moatlhodi Kgosimore ◽  
Dmitry Kuznetsov ◽  
Steady Mushayabasa

In this paper, a mathematical model for the transmission dynamics of Trypanosoma brucei rhodesiense that incorporates three species—namely, human, animal and vector—is formulated and analyzed. Two controls representing awareness campaigns and insecticide use are investigated in order to minimize the number of infected hosts in the population and the cost of implementation. Qualitative analysis of the model showed that it exhibited backward bifurcation generated by awareness campaigns. From the optimal control analysis we observed that optimal awareness and insecticide use could lead to effective control of the disease even when they were implemented at low intensities. In addition, it was noted that insecticide control had a greater impact on minimizing the spread of the disease compared to awareness campaigns.


2020 ◽  
Vol 107 ◽  
pp. 90-106
Author(s):  
G. Bejarano ◽  
M.G. Ortega ◽  
J.E. Normey-Rico ◽  
F.R. Rubio

2020 ◽  
Vol 13 (06) ◽  
pp. 2050047
Author(s):  
Fahad Al Basir

Farming awareness is an important measure for pest controlling in agricultural practice. Time delay in controlling pest may affect the system. Time delay occurs in organizing awareness campaigns, also time delay may takes place in becoming aware of the control strategies or implementing suitable controlling methods informed through social media. Thus we have derived a mathematical model incorporating two time delays into the system and Holling type-II functional response. The existence and the stability criteria of the equilibria are obtained in terms of the basic reproduction number and time delays. Stability changes occur through Hopf-bifurcation when time delays cross the critical values. Optimal control theory has been applied for cost-effectiveness of the delayed system. Numerical simulations are carried out to justify the analytical results. This study shows that optimal farming awareness through radio, TV etc. can control the delay induced bifurcation in a cost-effective way.


Sign in / Sign up

Export Citation Format

Share Document