Production potential, nitrogen use efficiency and economics of clarysage (Salvia sclarea L.) varieties as influenced by nitrogen levels under different locations

2014 ◽  
Vol 54 ◽  
pp. 86-91 ◽  
Author(s):  
M. Yaseen ◽  
Man Singh ◽  
Dasha Ram ◽  
Kambod Singh
2018 ◽  
Vol 53 (5) ◽  
pp. 620-632
Author(s):  
Pedro Patric Pinho Morais ◽  
Massaine Bandeira e Sousa ◽  
Giovanni Galli ◽  
Luciano Rogério Braatz e Andrade ◽  
Roberto Fritsche-Neto ◽  
...  

Abstract: The objective of this work was to examine the possibility of using yield components and reproductive, physiological, and root traits in early selection for nitrogen use efficiency (NUE) in corn. Sixty-four inbred lines were evaluated under two nitrogen fertilization levels: ideal and low. The evaluations were performed at three phenological stages: eight fully-expanded leaves, tasseling stage, and physiological maturity. It is possible to select superior lines for NUE, but the yield components did not show differential behavior under the different nitrogen levels evaluated. Root, reproductive, and physiological traits are not promising for early selection of corn lines with high NUE. Likewise, the eight-leaves and tasseling stages were not promising for this purpose, since NUE should be estimated taking grain yield into account. However, indirect selection for NUE can be performed via number of ears or using the selection index considering number and weight of ears.


Author(s):  
Patrícia Ferreira da Silva ◽  
Rigoberto Moreira de Matos ◽  
José Dantas Neto ◽  
Vitória Ediclécia Borges ◽  
Thiago Galvão Sobrinho ◽  
...  

The objectives were to analyze the water and nitrogen use efficiency by forage palm in different irrigation depths with saline water and nitrogen fertilization levels in the Brazilian semi-arid region. The experiment was conducted under field condition during one year of cultivation (360 days). The experimental design was a complete randomized block and 5 x 5 factorial scheme with five irrigation depths (125, 100, 75, and 25% of ET0) and five levels of nitrogen fertilization (0, 150, 300, 450 and 600 kg ha-1 of N) and three replicates. Irrigation and acceptable nitrogen fertilization resulted in a good water and fertilization management. Water and nitrogen use efficiency of forage palm were higher, when water depths and the nitrogen levels supplied to the soil were increased. The 125% ET0 depth showed a higher efficiency of water and nitrogen use in the forage palm during 360 days of study. In conditions of low nitrogen supply, the efficiency of nitrogen use is directly and indirectly associated with the fresh mass yield; while under high supply, the efficiency of the use of nitrogen is more effective. The use of irrigation and nitrogen fertilization in the semi-arid region is recommended to obtain higher productivity of water and nitrogen from the forage palm.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Izzat Sidahmed Ali Tahir ◽  
Elfadil Mohamed Elyayeb Elbashier ◽  
Mohamed Ahmed Salih Ibrahim ◽  
Abu Sefyan Ibrahim Saad ◽  
Osman Suliman Abdalla

Improved nitrogen use-efficient cultivars could be the most economically beneficial and environmentally friendly approach to reduce pollution associated with excessive N fertilization. The performance and genetic gain in grain yield and nitrogen use efficiency (NUE) of a historical set of 12 bread wheat cultivars released for a heat-stressed environment were investigated at four N levels (0 (N0), 43 (N43), 86 (N86), and 129 (N129) kg/ha) for two seasons. Averaged across seasons, increasing N level from N0 to N43, N86, and N129 resulted in yield increases ranging from 4−45%, 13–69%, and 34–87% at N43, N86, and N129, respectively. These yield increases were associated with increases in biomass (r = 0.86, P<0.01). Regressing grain yield of cultivars released during 1960 to 2006 against the year of release showed no trend at N0 and positive nonsignificant trends at N43;. however, significant positive trends were found at N86 and N129 with genetic gain rates of 12.65 and 15.76 kg ha−1 year−1, respectively. This gain was associated with progresses in harvest index (HI) at N43, N86, and N129 but not at N0. On the other hand, during the period from 1960 to 1990, the genetic gain in grain yield at N86 was 24.5 kg ha−1 year−1. Regressing NUE against the year of release showed significant linear trends at N86 and N129 (R2 = 0.511 and R2 = 0.477, respectively), but not at N43. The results indicate that breeders improved grain yield and NUE over 46 years under the heat-stressed environment of Sudan although the rate of increase in yield has been slowed down in recent years. Further improvement in NUE might require broadening the genetic diversity and simultaneous evaluation at low and high N levels.


2017 ◽  
Vol 40 (8) ◽  
pp. 1125-1132 ◽  
Author(s):  
Xiaokun Li ◽  
Zhengwei Xu ◽  
Chen Guo ◽  
Tao Ren ◽  
Rihuan Cong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document